No Arabic abstract
We present a numerically cheap approximation to super-sample covariance (SSC) of large scale structure cosmological probes, first in the case of angular power spectra. It necessitates no new elements besides those used for the prediction of the considered probes, thus relieving analysis pipelines from having to develop a full SSC modeling, and reducing the computational load. The approximation is asymptotically exact for fine redshift bins $Delta z rightarrow 0$. We furthermore show how it can be implemented at the level of a Gaussian likelihood or a Fisher matrix forecast, as a fast correction to the Gaussian case without needing to build large covariance matrices. Numerical application to a Euclid-like survey show that, compared to a full SSC computation, the approximation recovers nicely the signal-to-noise ratio as well as Fisher forecasts on cosmological parameters of the $w$CDM cosmological model. Moreover it allows for a fast prediction of which parameters are going to be the most affected by SSC and at which level. In the case of photometric galaxy clustering with Euclid-like specifications, we find that $sigma_8$, $n_s$ and the dark energy equation of state $w$ are particularly heavily affected. We finally show how to generalize the approximation for probes other than angular spectra (correlation functions, number counts and bispectra), and at the likelihood level, allowing for the latter to be non-Gaussian if needs be. We release publicly a Python module allowing to implement the SSC approximation, as well as a notebook reproducing the plots of the article, at https://github.com/fabienlacasa/PySSC
The covariance matrix $boldsymbol{Sigma}$ of non-linear clustering statistics that are measured in current and upcoming surveys is of fundamental interest for comparing cosmological theory and data and a crucial ingredient for the likelihood approximations underlying widely used parameter inference and forecasting methods. The extreme number of simulations needed to estimate $boldsymbol{Sigma}$ to sufficient accuracy poses a severe challenge. Approximating $boldsymbol{Sigma}$ using inexpensive but biased surrogates introduces model error with respect to full simulations, especially in the non-linear regime of structure growth. To address this problem we develop a matrix generalization of Convergence Acceleration by Regression and Pooling (CARPool) to combine a small number of simulations with fast surrogates and obtain low-noise estimates of $boldsymbol{Sigma}$ that are unbiased by construction. Our numerical examples use CARPool to combine GADGET-III $N$-body simulations with fast surrogates computed using COmoving Lagrangian Acceleration (COLA). Even at the challenging redshift $z=0.5$, we find variance reductions of at least $mathcal{O}(10^1)$ and up to $mathcal{O}(10^4)$ for the elements of the matter power spectrum covariance matrix on scales $8.9times 10^{-3}<k_mathrm{max} <1.0$ $h {rm Mpc^{-1}}$. We demonstrate comparable performance for the covariance of the matter bispectrum, the matter correlation function and probability density function of the matter density field. We compare eigenvalues, likelihoods, and Fisher matrices computed using the CARPool covariance estimate with the standard sample covariance estimators and generally find considerable improvement except in cases where $Sigma$ is severely ill-conditioned.
We give an analytical interpretation of how subsample-based internal covariance estimators lead to biased estimates of the covariance, due to underestimating the super-sample covariance (SSC). This includes the jackknife and bootstrap methods as estimators for the full survey area, and subsampling as an estimator of the covariance of subsamples. The limitations of the jackknife covariance have been previously presented in the literature because it is effectively a rescaling of the covariance of the subsample area. However we point out that subsampling is also biased, but for a different reason: the subsamples are not independent, and the corresponding lack of power results in SSC underprediction. We develop the formalism in the case of cluster counts that allows the bias of each covariance estimator to be exactly predicted. We find significant effects for a small-scale area or when a low number of subsamples is used, with auto-redshift biases ranging from 0.4% to 15% for subsampling and from 5% to 75% for jackknife covariance estimates. The cross-redshift covariance is even more affected; biases range from 8% to 25% for subsampling and from 50% to 90% for jackknife. Owing to the redshift evolution of the probe, the covariances cannot be debiased by a simple rescaling factor, and an exact debiasing has the same requirements as the full SSC prediction. These results thus disfavour the use of internal covariance estimators on data itself or a single simulation, leaving analytical prediction and simulations suites as possible SSC predictors.
We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100Mpc/h with particles of mass ~5*10^9Msolar/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10^11Msolar/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.
Photometric galaxy surveys probe the late-time Universe where the density field is highly non-Gaussian. A consequence is the emergence of the super-sample covariance (SSC), a non-Gaussian covariance term that is sensitive to fluctuations on scales larger than the survey window. In this work, we study the impact of the survey geometry on the SSC and, subsequently, on cosmological parameter inference. We devise a fast SSC approximation that accounts for the survey geometry and compare its performance to the common approximation of rescaling the results by the fraction of the sky covered by the survey, $f_mathrm{SKY}$, dubbed full-sky approximation. To gauge the impact of our new SSC recipe, dubbed partial-sky, we perform Fisher forecasts on the parameters of the $(w_0,w_a)$-CDM model in a 3x2 points analysis, varying the survey area, the geometry of the mask and the galaxy distribution inside our redshift bins. The differences in the marginalised forecast errors, with the full-sky approximation performing poorly for small survey areas but excellently for stage-IV-like areas, are found to be absorbed by the marginalisation on galaxy bias nuisance parameters. For large survey areas, the unmarginalised errors are underestimated by about 10% for all probes considered. This is a hint that, even for stage-IV-like surveys, the partial-sky method introduced in this work will be necessary if tight priors are applied on these nuisance parameters.
The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional Fast Fourier Transforms. This is exact and a few orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. The method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.