Do you want to publish a course? Click here

A Deep Learning and Gamification Approach to Energy Conservation at Nanyang Technological University

339   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The implementation of smart building technology in the form of smart infrastructure applications has great potential to improve sustainability and energy efficiency by leveraging humans-in-the-loop strategy. However, human preference in regard to living conditions is usually unknown and heterogeneous in its manifestation as control inputs to a building. Furthermore, the occupants of a building typically lack the independent motivation necessary to contribute to and play a key role in the control of smart building infrastructure. Moreover, true human actions and their integration with sensing/actuation platforms remains unknown to the decision maker tasked with improving operational efficiency. By modeling user interaction as a sequential discrete game between non-cooperative players, we introduce a gamification approach for supporting user engagement and integration in a human-centric cyber-physical system. We propose the design and implementation of a large-scale network game with the goal of improving the energy efficiency of a building through the utilization of cutting-edge Internet of Things (IoT) sensors and cyber-physical systems sensing/actuation platforms. A benchmark utility learning framework that employs robust estimations for classical discrete choice models provided for the derived high dimensional imbalanced data. To improve forecasting performance, we extend the benchmark utility learning scheme by leveraging Deep Learning end-to-end training with Deep bi-directional Recurrent Neural Networks. We apply the proposed methods to high dimensional data from a social game experiment designed to encourage energy efficient behavior among smart building occupants in Nanyang Technological University (NTU) residential housing. Using occupant-retrieved actions for resources such as lighting and A/C, we simulate the game defined by the estimated utility functions.

rate research

Read More

Recent focus on robustness to adversarial attacks for deep neural networks produced a large variety of algorithms for training robust models. Most of the effective algorithms involve solving the min-max optimization problem for training robust models (min step) under worst-case attacks (max step). However, they often suffer from high computational cost from running several inner maximization iterations (to find an optimal attack) inside every outer minimization iteration. Therefore, it becomes difficult to readily apply such algorithms for moderate to large size real world data sets. To alleviate this, we explore the effectiveness of iterative descent-ascent algorithms where the maximization and minimization steps are executed in an alternate fashion to simultaneously obtain the worst-case attack and the corresponding robust model. Specifically, we propose a novel discrete-time dynamical system-based algorithm that aims to find the saddle point of a min-max optimization problem in the presence of uncertainties. Under the assumptions that the cost function is convex and uncertainties enter concavely in the robust learning problem, we analytically show that our algorithm converges asymptotically to the robust optimal solution under a general adversarial budget constraints as induced by $ell_p$ norm, for $1leq pleq infty$. Based on our proposed analysis, we devise a fast robust training algorithm for deep neural networks. Although such training involves highly non-convex robust optimization problems, empirical results show that the algorithm can achieve significant robustness compared to other state-of-the-art robust models on benchmark data sets.
In this study, a novel topology optimization approach based on conditional Wasserstein generative adversarial networks (CWGAN) is developed to replicate the conventional topology optimization algorithms in an extremely computationally inexpensive way. CWGAN consists of a generator and a discriminator, both of which are deep convolutional neural networks (CNN). The limited samples of data, quasi-optimal planar structures, needed for training purposes are generated using the conventional topology optimization algorithms. With CWGANs, the topology optimization conditions can be set to a required value before generating samples. CWGAN truncates the global design space by introducing an equality constraint by the designer. The results are validated by generating an optimized planar structure using the conventional algorithms with the same settings. A proof of concept is presented which is known to be the first such illustration of fusion of CWGANs and topology optimization.
Bin Packing problems have been widely studied because of their broad applications in different domains. Known as a set of NP-hard problems, they have different vari- ations and many heuristics have been proposed for obtaining approximate solutions. Specifically, for the 1D variable sized bin packing problem, the two key sets of optimization heuristics are the bin assignment and the bin allocation. Usually the performance of a single static optimization heuristic can not beat that of a dynamic one which is tailored for each bin packing instance. Building such an adaptive system requires modeling the relationship between bin features and packing perform profiles. The primary drawbacks of traditional AI machine learnings for this task are the natural limitations of feature engineering, such as the curse of dimensionality and feature selection quality. We introduce a deep learning approach to overcome the drawbacks by applying a large training data set, auto feature selection and fast, accurate labeling. We show in this paper how to build such a system by both theoretical formulation and engineering practices. Our prediction system achieves up to 89% training accuracy and 72% validation accuracy to select the best heuristic that can generate a better quality bin packing solution.
We revisit the initialization of deep residual networks (ResNets) by introducing a novel analytical tool in free probability to the community of deep learning. This tool deals with non-Hermitian random matrices, rather than their conventional Hermitian counterparts in the literature. As a consequence, this new tool enables us to evaluate the singular value spectrum of the input-output Jacobian of a fully-connected deep ResNet for both linear and nonlinear cases. With the powerful tool of free probability, we conduct an asymptotic analysis of the spectrum on the single-layer case, and then extend this analysis to the multi-layer case of an arbitrary number of layers. In particular, we propose to rescale the classical random initialization by the number of residual units, so that the spectrum has the order of $O(1)$, when compared with the large width and depth of the network. We empirically demonstrate that the proposed initialization scheme learns at a speed of orders of magnitudes faster than the classical ones, and thus attests a strong practical relevance of this investigation.
This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا