No Arabic abstract
The direct detection of gravitational waves crowns decades of efforts in the modelling of sources and of increasing detectors sensitivity. With future third-generation Earth-based detectors or space-based observatories, gravitational-wave astronomy will be at its full bloom. Previously brushed-aside questions on environmental or other systematic effects in the generation and propagation of gravitational waves are now begging for a systematic treatment. Here, we study how electromagnetic and gravitational radiation is scattered by a binary system. Scattering cross-sections, resonances and the effect of an impinging wave on a gravitational-bound binary are worked out for the first time. The ratio between the scattered-wave amplitude and the incident wave can be of order $10^{-5}$ for known pulsars, bringing this into the realm of future gravitational-wave observatories. For currently realistic distribution of compact-object binaries, the interaction cross-section is too small to be of relevance.
In this talk I review recent progresses in the detection of scalar gravitational waves. Furthermore, in the framework of the Jordan-Brans-Dicke theory, I compute the signal to noise ratio for a resonant mass detector of spherical shape and for binary sources and collapsing stars. Finally I compare these results with those obtained from laser interferometers and from Einsteinian gravity.
Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of String Theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in General Relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
The renewed serious interest to possible practical applications of gravitational waves is encouraging. Building on previous work, I am arguing that the strong variable electromagnetic fields are appropriate systems for the generation and detection of high-frequency gravitational waves (HFGW). The advantages of electromagnetic systems are clearly seen in the proposed complete laboratory experiment, where one has to ensure the efficiency of, both, the process of generation and the process of detection of HFGW. Within the family of electromagnetic systems, one still has a great variety of possible geometrical configurations, classical and quantum states of the electromagnetic field, detection strategies, etc. According to evaluations performed 30 years ago, the gap between the HFGW laboratory signal and its level of detectability is at least 4 orders of magnitude. Hopefully, new technologies of today can remove this gap and can make the laboratory experiment feasible. The laboratory experiment is bound to be expensive, but one should remember that a part of the cost is likely to be reimbursed from the Nobel prize money ! Electromagnetic systems seem also appropriate for the detection of high-frequency end of the spectrum of relic gravitational waves. Although the current effort to observe the stochastic background of relic gravitational waves is focused on the opposite, very low-frequency, end of the spectrum, it would be extremely valuable for fundamental science to detect, or put sensible upper limits on, the high-frequency relic gravitational waves. I will briefly discuss the origin of relic gravitational waves, the expected level of their high-frequency signal, and the existing estimates of its detectability.
Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk, with the variance of orbital elements growing with time. The lack of such a random walk in binaries that have been monitored with high precision over long time-scales can thus be used to place an upper bound on the gravitational-wave background. Using periastron time data from the Hulse-Taylor binary pulsar spanning ~30 years, we obtain a bound of h_c < 7.9*10^(-14) at ~10^(-4) Hz, where h_c is the strain amplitude per logarithmic frequency interval. Our constraint complements those from pulsar timing arrays, which probe much lower frequencies, and ground-based gravitational-wave observations, which probe much higher frequencies. Interesting sources in our frequency band, which overlaps the lower sensitive frequencies of proposed space-based observatories, include white-dwarf/supermassive black-hole binaries in the early/late stages of inspiral, and TeV scale preheating or phase transitions. The bound improves as (time span)^(-2) and (sampling rate)^(-1/2). The Hulse-Taylor constraint can be improved to ~3.8*10^(-15) with a suitable observational campaign over the next decade. Our approach can also be applied to other binaries, including (with suitable care) the Earth-Moon system, to obtain constraints at different frequencies. The observation of additional binary pulsars with the SKA could reach a sensitivity of h_c ~ 3*10^(-17).
We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multi-detector search for binary coalescence has been used to search data taken in recent LIGO and Virgo runs. The search is built around a matched filter analysis of the data, augmented by numerous signal consistency tests designed to distinguish artifacts of non-Gaussian detector noise from potential detections. We demonstrate the search performance using Gaussian noise and data from the fifth LIGO science run and demonstrate that the signal consistency tests are capable of mitigating the effect of non-Gaussian noise and providing a sensitivity comparable to that achieved in Gaussian noise.