No Arabic abstract
The VVV survey has allowed for an unprecedented number of multi-epoch observations of the southern Galactic plane. In a recent paper,13 massive young stellar objects(MYSOs) have already been identified within the highly variable(Delta Ks > 1 mag) YSO sample of another published work.This study aims to understand the general nature of variability in MYSOs.We present the first systematic study of variability in a large sample of candidate MYSOs.We examined the data for variability of the putative driving sources of all known Spitzer EGOs and bright 24 mu m sources coinciding with the peak of 870 mu m detected ATLASGAL clumps, a total of 718 targets. Of these, 190 point sources (139 EGOs and 51 non-EGOs) displayed variability (IQR > 0.05, Delta Ks > 0.15 mag). Light-curves(LCs) have been sub-classified into eruptive, dipper, fader, short-term-variable and long-period variable-YSO categories.Lomb-Scargle periodogram analysis of periodic LCs was carried out. 1 - 870 mu m spectral energy distributions of the variable sources were fitted with YSO models to obtain representative properties. 41% of the variable sources are represented by > 4Msun objects, and only 6% by > 8Msun objects.The highest-mass objects are mostly non-EGOs,deeply embedded.By placing them on the HR diagram we show that most lower mass,EGO type objects are concentrated on the putative birth-line position, while the luminous non-EGO type objects group around the ZAMS track.Some of the most luminous far infrared sources in the massive clumps and infrared quiet driving sources of EGOs have been missed out by this study owing to an uniform sample selection method.A high rate of detectable variability in EGO targets (139 out of 153 searched) implies that near-infrared variability in MYSOs is closely linked to the accretion phenomenon and outflow activity.
Methanol and water masers indicate young stellar objects. They often exhibit flares, and a fraction shows periodic activity. Several mechanisms might explain this behavior but the lack of concurrent infrared (IR) data complicates to identify the cause. Recently, 6.7 GHz methanol maser flares were observed, triggered by accretion bursts of high-mass YSOs which confirmed the IR-pumping of these masers. This suggests that regular IR changes might lead to maser periodicity. Hence, we scrutinized space-based IR imaging of YSOs associated with periodic methanol masers. We succeeded to extract the IR light curve from NEOWISE data for the intermediate mass YSO G107.298+5.639. Thus, for the first time a relationship between the maser and IR variability could be established. While the IR light curve shows the same period of ~34.6 days as the masers, its shape is distinct from that of the maser flares. Possible reasons for the IR periodicity are discussed.
Episodic accretion-driven outbursts are an extreme manifestation of accretion variability. It has been proposed that the development of gravitational instabilities in the proto-circumstellar medium of massive young stellar objects (MYSOs) can lead to such luminous bursts, when clumps of fragmented accretion discs migrate onto the star. We simulate the early evolution of MYSOs formed by the gravitational collapse of rotating 100 M pre-stellar cores and analyze the characteristics of the bursts that episodically accompany their strongly time-variable protostellar lightcurve. We predict that MYSOs spend ~ 10^3 yr (~ 1.7%) of their modelled early 60 kyr experiencing eruptive phases, during which the peak luminosity exceeds the quiescent pre-burst values by factors from 2.5 to more than 40. Throughout these short time periods, they can acquire a substential fraction (up to ~ 50 %) of their zero-age-main sequence mass. Our findings show that fainter bursts are more common than brighter ones. We discuss our results in the context of the known bursting MYSOs, e.g. NGC6334I-MM1 and S255IR-NIRS3, and propose that these monitored bursts are part of a long-time ongoing series of eruptions, which might, in the future, be followed by other luminous flares.
Massive stars play an important role in many areas of astrophysics, but numerous details regarding their formation remain unclear. In this paper we present and analyse high resolution (R ~ 30,000) near-infrared 2.3 micron spectra of 20 massive young stellar objects from the RMS database, in the largest such study of CO first overtone bandhead emission to date. We fit the emission under the assumption it originates from a circumstellar disc in Keplerian rotation. We explore three approaches to modelling the physical conditions within the disc - a disc heated mainly via irradiation from the central star, a disc heated mainly via viscosity, and a disc in which the temperature and density are described analytically. We find that the models described by heating mechanisms are inappropriate because they do not provide good fits to the CO emission spectra. We therefore restrict our analysis to the analytic model, and obtain good fits to all objects that possess sufficiently strong CO emission, suggesting circumstellar discs are the source of this emission. On average, the temperature and density structure of the discs correspond to geometrically thin discs, spread across a wide range of inclinations. Essentially all the discs are located within the dust sublimation radius, providing strong evidence that the CO emission originates close to the central protostar, on astronomical unit scales. In addition, we show that the objects in our sample appear no different to the general population of MYSOs in the RMS database, based on their near- and mid-infrared colours. The combination of observations of a large sample of MYSOs with CO bandhead emission and our detailed modelling provide compelling evidence of the presence of small scale gaseous discs around such objects, supporting the scenario in which massive stars form via disc accretion.
We present Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) spectroscopy of a sample of twenty massive Young Stellar Objects (YSOs) in the Large and Small Magellanic Clouds (LMC and SMC). We analyse the brightest far infrared (far-IR) emission lines, that diagnose the conditions of the heated gas in the YSO envelope and pinpoint their physical origin.We compare the properties of massive Magellanic and Galactic YSOs.We find that [OI] and [CII] emission, that originates from the photodissociation region associated with the YSOs, is enhanced with respect to the dust continuum in the Magellanic sample. Furthermore the photoelectric heating efficiency is systematically higher for Magellanic YSOs, consistent with reduced grain charge in low metallicity environments. The observed CO emission is likely due to multiple shock components. The gas temperatures, derived from the analysis of CO rotational diagrams, are similar to Galactic estimates. This suggests a common origin to the observed CO excitation, from low-luminosity to massive YSOs, both in the Galaxy and the Magellanic Clouds. Bright far-IR line emission provides a mechanism to cool the YSO environment. We find that, even though [OI], CO and [CII] are the main line coolants, there is an indication that CO becomes less important at low metallicity, especially for the SMC sources. This is consistent with a reduction in CO abundance in environments where the dust is warmer due to reduced ultraviolet-shielding. Weak H$_2$O and OH emission is detected, consistent with a modest role in the energy balance of wider massive YSO environments.
We present radiation transfer models of rotating young stellar objects (YSOs) with hotspots in their atmospheres, inner disk warps and other 3-D effects in the nearby circumstellar environment. Our models are based on the geometry expected from the magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hotspots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project (Morales-Calderon et al. 2014, Cody et al. 2014) to determine if these processes can explain the variability observed at optical and mid-infrared wavelengths in young stars. We focus on those variables exhibiting dipper behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hotspot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that the magneto-accretion theory is consistent with certain aspects of the multi-wavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hotspot and inner disk geometries of particular sources.