No Arabic abstract
Quantum key distribution (QKD), a technology that enables perfectly secure communication, has evolved to the stage where many different protocols are being used in real-world implementations. Each protocol has its own advantages, meaning that users can choose the one best-suited to their application, however each often requires different hardware. This complicates multi-user networks, in which users may need multiple transmitters to communicate with one another. Here, we demonstrate a direct-modulation based transmitter that can be used to implement most weak coherent pulse based QKD protocols with simple changes to the driving signals. This also has the potential to extend to classical communications, providing a low chirp transmitter with simple driving requirements that combines phase shift keying with amplitude shift keying. We perform QKD with concurrent time-bin and phase modulation, alongside phase randomisation. The acquired data is used to evaluate secure key rates for time-bin encoded BB84 with decoy states and a finite key-size analysis, giving megabit per second secure key rates, 1.60 times higher than if purely phase-encoded BB84 was used.
Signal state preparation in quantum key distribution schemes can be realized using either an active or a passive source. Passive sources might be valuable in some scenarios; for instance, in those experimental setups operating at high transmission rates, since no externally driven element is required. Typical passive transmitters involve parametric down-conversion. More recently, it has been shown that phase-randomized coherent pulses also allow passive generation of decoy states and Bennett-Brassard 1984 (BB84) polarization signals, though the combination of both setups in a single passive source is cumbersome. In this paper, we present a complete passive transmitter that prepares decoy-state BB84 signals using coherent light. Our method employs sum-frequency generation together with linear optical components and classical photodetectors. In the asymptotic limit of an infinite long experiment, the resulting secret key rate (per pulse) is comparable to the one delivered by an active decoy-state BB84 setup with an infinite number of decoy settings.
We present a silicon optical transmitter for polarization-encoded quantum key distribution (QKD). The chip was fabricated in a standard silicon photonic foundry process and integrated a pulse generator, intensity modulator, variable optical attenuator, and polarization modulator in a 1.3 mm $times$ 3 mm die area. The devices in the photonic circuit meet the requirements for QKD. The transmitter was used in a proof-of-concept demonstration of the BB84 QKD protocol over a 5 km long fiber link.
We describe the realization of a quantum key distribution (QKD) system clocked at 100 MHz. The system includes classical postprocessing implemented via software, and is operated over a 12 km standard telecommunication dark fiber in a real-world environment. A time-cost analysis of the sifted, error-corrected, and secret key rates relative to the raw key rate is presented, and the scalability of our implementation with respect to higher secret key rates is discussed.
We present a 2.5 GHz quantum key distribution setup with the emphasis on a simple experimental realization. It features a three-state time-bin protocol based on a pulsed diode laser and a single intensity modulator. Implementing an efficient one-decoy scheme and finite-key analysis, we achieve record breaking secret key rates of 1.5 kbps over 200 km of standard optical fiber.
Measurement-device-independent quantum key distribution (MDI-QKD) is a technique for quantum-secured communication that eliminates all detector side-channels, although is currently limited by implementation complexity and low secure key rates. Here, we introduce a simple and compact MDI-QKD system design at gigahertz clock rates with enhanced resilience to laser fluctuations - thus enabling free-running semiconductor laser sources to be employed without spectral or phase feedback. This is achieved using direct laser modulation, carefully exploiting gain-switching and injection-locking laser dynamics to encode phase-modulated time-bin bits. Our design enables secure key rates that improve upon the state of the art by an order of magnitude, up to 8 bps at 54 dB channel loss and 2 kbps in the finite-size regime for 30 dB channel loss. This greatly simplified MDI-QKD system design and proof-of-principle demonstration shows that MDI-QKD is a practical, high-performance solution for future quantum communication networks.