Do you want to publish a course? Click here

Coronal hard X-ray sources revisited

74   0   0.0 ( 0 )
 Added by Andrew Inglis
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper reports on the re-analysis of solar flares in which the hard X-rays (HXRs) come predominantly from the corona rather than from the more usual chromospheric footpoints. All of the 26 previously analyzed event time intervals, over 13 flares, are re-examined for consistency with a flare model in which electrons are accelerated near the top of a magnetic loop that has a sufficiently high density to stop most of the electrons by Coulomb collisions before they can reach the footpoints. Of particular importance in the previous analysis was the finding that the length of the coronal HXR source increased with energy in the 20 - 30 keV range. However, after allowing for the possibility that footpoint emission at the higher energies affects the inferred length of the coronal HXR source, and using analysis techniques that suppress the possible influence of such footpoint emission, we conclude that there is no longer evidence that the length of the HXR coronal sources increase with increasing energy. In fact, for the 6 flares and 12 time intervals that satisfied our selection criteria, the loop lengths decreased on average by 1.0 +/- 0.2 arcsec between 20 and 30 keV, with a standard deviation of 3.5 arcsec. We find strong evidence that the peak of the coronal HXR source increases in altitude with increasing energy. For the thermal component of the emission, this is consistent with the standard CHSKP flare model in which magnetic reconnection in a coronal current sheet results in new hot loops being formed at progressively higher altitudes. The explanation for the nonthermal emission is not so clear.



rate research

Read More

Much evidence suggests that the solar corona is heated impulsively, meaning that nanoflares may be ubiquitous in quiet and active regions (ARs). Hard X-ray (HXR) observations with unprecedented sensitivity $>$3~keV are now enabled by focusing instruments. We analyzed data from the textit{Focusing Optics X-ray Solar Imager (FOXSI)} rocket and the textit{Nuclear Spectroscopic Telescope Array (NuSTAR)} spacecraft to constrain properties of AR nanoflares simulated by the EBTEL field-line-averaged hydrodynamics code. We generated model X-ray spectra by computing differential emission measures for homogeneous nanoflare sequences with heating amplitudes $H_0$, durations $tau$, delay times between events $t_N$, and filling factors $f$. The single quiescent AR observed by textit{FOXSI-2} on 2014 December 11 is well fit by nanoflare sequences with heating amplitudes 0.02 erg cm$^{-3}$ s$^{-1}$ $<$ $H_0$ $<$ 13 erg cm$^{-3}$ s$^{-1}$ and a wide range of delay times and durations. We exclude delays between events shorter than $sim$900 s at the 90% confidence level for this region. Three of five regions observed by { ustar} on 2014 November 1 are well fit by homogeneous nanoflare models, while two regions with higher fluxes are not. Generally, the { ustar} count spectra are well fit by nanoflare sequences with smaller heating amplitudes, shorter delays, and shorter durations than the allowed textit{FOXSI-2} models. These apparent discrepancies are likely due to differences in spectral coverage between the two instruments and intrinsic differences among the regions. Steady heating ($t_N$ = $tau$) was ruled out with $>$99% confidence for all regions observed by either instrument.
We present the statistical analysis of 33 flare-related coronal jets, and discuss the link between the jet and the flare properties in these events. We selected jets that were observed between 2010 and 2016 by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) and are temporally and spatially associated to flares observed by the Reuven Ramaty High Energy Solar Spectrometric Imager (RHESSI). For each jet, we calculated the jet duration and projected velocity in the plane of sky. The jet duration distribution has a median of 18.8 minutes. The projected velocities are between 31 km/s and 456 km/s with a median at 210 km/s. For each associated flare, we performed X-ray imaging and spectroscopy and identify non-thermal emission. Non-thermal emission was detected in only 1/4 of the event considered. We did not find a clear correlation between the flare thermal energy or SXR peak flux and the jet velocity. A moderate anti-correlation was found between the jet duration and the flare SXR peak flux. There is no preferential time delay between the flare and the jet. The X-ray emission is generally located at the base of the jet. The analysis presented in this paper suggests that the flare and jet are part of the same explosive event, that the jet is driven by the propagation of an Alfvenic perturbation, and that the energy partition between flare and jets varies substantially from one event to another.
Context: Hard X-rays from solar flares are an important diagnostic of particle acceleration and transport in the solar atmosphere. Any observed X-ray flux from on-disc sources is composed of direct emission plus Compton backscattered photons (albedo). This affects both the observed spectra and images as well as the physical quantities derived from them such as the spatial and spectral distributions of accelerated electrons or characteristics of the solar atmosphere. Aims: We propose a new indirect method to measure albedo and to infer the directivity of X-rays in imaging using RHESSI data. Methods: Visibility forward fitting is used to determine the size of a disc event observed by RHESSI as a function of energy. This is compared to the sizes of simulated sources from a Monte Carlo simulation code of photon transport in the chromosphere for different degrees of downward directivity and true source sizes to find limits on the true source size and the directivity. Results: The observed full width half maximum of the source varies in size between 7.4 arcsec and 9.1 arcsec with the maximum between 30 and 40 keV. Such behaviour is expected in the presence of albedo and is found in the simulations. A source size smaller than 6 arcsec is improbable for modest directivities and the true source size is likely to be around 7 arcsec for small directivities. Conclusions: While it is difficult to image the albedo patch directly, the effect of backscattered photons on the observed source size can be estimated. The increase in source size caused by albedo has to be accounted for when computing physical quantities that include the size as a parameter such as flare energetics. At the same time, the study of the albedo signature provides vital information about the directivity of X-rays and related electrons.
We describe observations of a white-light flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray sources.For this purpose we use hard X-ray images from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI), and optical images at 6173 AA from the Solar Dynamics Observatory (SDO). We find that the centroids of the impulsive-phase emissions in white light and hard X-rays (30-80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0.2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions, as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 AA image from the Solar-Terrestrial RElations Observatory (STEREO-B) spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; tau = 1 at 5000 AA) of 305 pm 170 km and 195 pm 70 km, respectively, for the centroids of the hard X-ray (HXR) and white light (WL) footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of tau = 1 for the 6173 AA and the ~40 keV photons observed, respectively.
154 - Yao Chen , Zhao Wu , Wei Liu 2017
Double coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in a large-scale current sheet in solar ares. Here we present a study on double coronal sources observed in both HXR and microwave regimes, revealing new characteristics distinct from earlier reports. This event is associated with a footpoint-occulted X1.3-class flare (25 April 2014, starting at 00:17 UT) and a coronal mass ejection that are likely triggered by the magnetic breakout process, with the lower source extending upward from the top of the partially-occulted flare loops and the upper source co-incident with rapidly squeezing-in side lobes (at a speed of ~250 km/s on both sides). The upper source can be identified at energies as high as 70-100 keV. The X-ray upper source is characterized by flux curves different from the lower source, a weak energy dependence of projected centroid altitude above 20 keV, a shorter duration and a HXR photon spectrum slightly-harder than those of the lower source. In addition, the microwave emission at 34 GHz also exhibits a similar double source structure and the microwave spectra at both sources are in line with gyro-synchrotron emission given by non- thermal energetic electrons. These observations, especially the co-incidence of the very-fast squeezing-in motion of side lobes and the upper source, indicate that the upper source is associated with (possibly caused by) this fast motion of arcades. This sheds new lights on the origin of the corona double-source structure observed in both HXRs and microwaves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا