No Arabic abstract
In this work, we establish the connection between the study of free spectrahedra and the compatibility of quantum measurements with an arbitrary number of outcomes. This generalizes previous results by the authors for measurements with two outcomes. Free spectrahedra arise from matricial relaxations of linear matrix inequalities. A particular free spectrahedron which we define in this work is the matrix jewel. We find that the compatibility of arbitrary measurements corresponds to the inclusion of the matrix jewel into a free spectrahedron defined by the effect operators of the measurements under study. We subsequently use this connection to bound the set of (asymmetric) inclusion constants for the matrix jewel using results from quantum information theory and symmetrization. The latter translate to new lower bounds on the compatibility of quantum measurements. Among the techniques we employ are approximate quantum cloning and mutually unbiased bases.
We introduce the notion of compatibility dimension for a set of quantum measurements: it is the largest dimension of a Hilbert space on which the given measurements are compatible. In the Schrodinger picture, this notion corresponds to testing compatibility with ensembles of quantum states supported on a subspace, using the incompatibility witnesses of Carmeli, Heinosaari, and Toigo. We provide several bounds for the compatibility dimension, using approximate quantum cloning or algebraic techniques inspired by quantum error correction. We analyze in detail the case of two orthonormal bases, and, in particular, that of mutually unbiased bases.
In this work, we investigate the joint measurability of quantum effects and connect it to the study of free spectrahedra. Free spectrahedra typically arise as matricial relaxations of linear matrix inequalities. An example of a free spectrahedron is the matrix diamond, which is a matricial relaxation of the $ell_1$-ball. We find that joint measurability of binary POVMs is equivalent to the inclusion of the matrix diamond into the free spectrahedron defined by the effects under study. This connection allows us to use results about inclusion constants from free spectrahedra to quantify the degree of incompatibility of quantum measurements. In particular, we completely characterize the case in which the dimension is exponential in the number of measurements. Conversely, we use techniques from quantum information theory to obtain new results on spectrahedral inclusion for the matrix diamond.
Incompatibility of quantum measurements is of fundamental importance in quantum mechanics. It is closely related to many nonclassical phenomena such as Bell nonlocality, quantum uncertainty relations, and quantum steering. We study the necessary and sufficient conditions of quantum compatibility for a given collection of $n$ measurements in $d$-dimensional space. From the compatibility criterion for two-qubit measurements, we compute the incompatibility probability of a pair of independent random measurements. For a pair of unbiased random qubit measurements, we derive that the incompatibility probability is exactly $frac35$. Detailed results are also presented in figures for pairs of general qubit measurements.
With the advent of gravitational wave detectors employing squeezed light, quantum waveform estimation---estimating a time-dependent signal by means of a quantum-mechanical probe---is of increasing importance. As is well known, backaction of quantum measurement limits the precision with which the waveform can be estimated, though these limits can in principle be overcome by quantum nondemolition (QND) measurement setups found in the literature. Strictly speaking, however, their implementation would require infinite energy, as their mathematical description involves Hamiltonians unbounded from below. This raises the question of how well one may approximate nondemolition setups with finite energy or finite-dimensional realizations. Here we consider a finite-dimensional waveform estimation setup based on the quasi-ideal clock and show that the estimation errors due to approximating the QND condition decrease slowly, as a power law, with increasing dimension. As a result, we find that good QND approximations require large energy or dimensionality. We argue that this result can be expected to also hold for setups based on truncated oscillators or spin systems.
The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with more detailed examples -- coming from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels.