The largest M dwarfs flares from ASAS-SN


Abstract in English

The All-Sky Automated Survey for Supernovae (ASAS-SN) is the only project in existence to scan the entire sky in optical light every $sim$day, reaching a depth of $gsim18$ mag. Over the course of its first four years of transient alerts (2013-2016), ASAS-SN observed 53 events classified as likely M dwarf flares. We present follow-up photometry and spectroscopy of all 53 candidates, confirming flare events on 47 M dwarfs, one K dwarf, and one L dwarf. The remaining four objects include a previously identified TT Tauri star, a young star with outbursts, and two objects too faint to confirm. A detailed examination of the 49 flare star light curves revealed an additional six flares on five stars, resulting in a total of 55 flares on 49 objects ranging in $V$-band contrast from $Delta V = -1$ to $-10.2$ mags. Using an empirical flare model to estimate the unobserved portions of the flare light curve, we obtain lower limits on the $V$-band energy emitted during each flare, spanning $log(E_V/{rm ergs})=32$ to $35$, which are among the most energetic flares detected on M dwarfs. The ASAS-SN M-dwarf flare stars show a higher fraction of H$alpha$ emission as well as stronger H$alpha$ emission compared to M dwarfs selected without reference to activity, consistent with belonging to a population of more magnetically active stars. We also examined the distribution of tangential velocities, finding that the ASAS-SN flaring M dwarfs are likely to be members of the thin disk and are neither particularly young nor old.

Download