No Arabic abstract
We investigate the effects of viscosity and heat conduction on the onset and growth of Kelvin-Helmholtz instability (KHI) via an efficient discrete Boltzmann model. Technically, two effective approaches are presented to quantitatively analyze and understand the configurations and kinetic processes. One is to determine the thickness of mixing layers through tracking the distributions and evolutions of the thermodynamic nonequilibrium (TNE) measures; the other is to evaluate the growth rate of KHI from the slopes of morphological functionals. Physically, it is found that the time histories of width of mixing layer, TNE intensity, and boundary length show high correlation and attain their maxima simultaneously. The viscosity effects are twofold, stabilize the KHI, and enhance both the local and global TNE intensities. Contrary to the monotonically inhibiting effects of viscosity, the heat conduction effects firstly refrain then enhance the evolution afterwards. The physical reasons are analyzed and presented.
In this paper, the coupled Rayleigh-Taylor-Kelvin-Helmholtz instability(RTI, KHI and RTKHI, respectively) system is investigated using a multiple-relaxation-time discrete Boltzmann model. Both the morphological boundary length and thermodynamic nonequilibrium (TNE) strength are introduced to probe the complex configurations and kinetic processes. In the simulations, RTI always plays a major role in the later stage, while the main mechanism in the early stage depends on the comparison of buoyancy and shear strength. It is found that, both the total boundary length $L$ of the condensed temperature field and the mean heat flux strength $D_{3,1}$ can be used to measure the ratio of buoyancy to shear strength, and to quantitatively judge the main mechanism in the early stage of the RTKHI system. Specifically, when KHI (RTI) dominates, $L^{KHI} > L^{RTI}$ ($L^{KHI} < L^{RTI}$), $D_{3,1}^{KHI} > D_{3,1}^{RTI}$ ($D_{3,1}^{KHI} < D_{3,1}^{RTI}$); when KHI and RTI are balanced, $L^{KHI} = L^{RTI}$, $D_{3,1}^{KHI} = D_{3,1}^{RTI}$. A second sets of findings are as below: For the case where the KHI dominates at earlier time and the RTI dominates at later time, the evolution process can be roughly divided into two stages. Before the transition point of the two stages, $L^{RTKHI}$ initially increases exponentially, and then increases linearly. Hence, the ending point of linear increasing $L^{RTKHI}$ can work as a geometric criterion for discriminating the two stages. The TNE quantity, heat flux strength $D_{3,1}^{RTKHI}$, shows similar behavior. Therefore, the ending point of linear increasing $D_{3,1}^{RTKHI}$ can work as a physical criterion for discriminating the two stages.
We provide numerical evidence that a Kelvin-Helmholtz instability occurs in the Dirac fluid of electrons in graphene and can be detected in current experiments. This instability appears for electrons in the viscous regime passing though a micrometer-scale obstacle and affects measurements on the time scale of nanoseconds. A possible realization with a needle-shaped obstacle is proposed to produce and detect this instability by measuring the electric potential difference between contact points located before and after the obstacle. We also show that, for our setup, the Kelvin-Helmholtz instability leads to the formation of whirlpools similar to the ones reported in Bandurin et al. [Science 351, 1055 (2016)]. To perform the simulations, we develop a lattice Boltzmann method able to recover the full dissipation in a fluid of massless particles.
The Kelvin-Helmholtz instability is well-known in classical hydrodynamics, where it explains the sudden emergence of interfacial surface waves as a function of the velocity of flow parallel to the interface. It can be carried over to the inviscid two-fluid dynamics of superfluids, to study different types of interfaces and phase boundaries in quantum fluids. We report measurements on the stability of the phase boundary separating the two bulk phases of superfluid 3He in rotating flow, while the boundary is localized with the gradient of the magnetic field to a position perpendicular to the rotation axis. The results demonstrate that the classic stability condition, when modified for the superfluid environment, is obeyed down to 0.4 Tc, if a large fraction of the magnetic polarization of the B-phase is attributed to a parabolic reduction of the interfacial surface tension with increasing magnetic field.
There has been interest in recent years to assess the ability of astrophysical hydrodynamics codes to correctly model the Kelvin-Helmholtz instability. Smoothed particle hydrodynamics (SPH), in particular, has received significant attention, though there has yet to be a clear demonstration that SPH yields converged solutions that are in agreement with other methods. We have performed SPH simulations of the Kelvin-Helmholtz instability using the test problem put forward by Lecoanet et al (2016). We demonstrate that the SPH solutions converge to the reference solution in both the linear and non-linear regimes. Quantitative convergence in the strongly non-linear regime is achieved by using a physical Navier-Stokes viscosity and thermal conductivity. We conclude that standard SPH with an artificial viscosity can correctly capture the Kelvin-Helmholtz instability.
We perform simulations of the Kelvin-Helmholtz instability using smoothed particle hydrodynamics (SPH). The instability is studied both in the linear and strongly non-linear regimes. The smooth, well-posed initial conditions of Lecoanet et al. (2016) are used, along with an explicit Navier-Stokes viscosity and thermal conductivity to enforce the evolution in the non-linear regime. We demonstrate convergence to the reference solution using SPH. The evolution of the vortex structures and the degree of mixing, as measured by a passive scalar `colour field, match the reference solution. Tests with an initial density contrast produce the correct qualitative behaviour. The L2 error of the SPH calculations decreases as the resolution is increased. The primary source of error is numerical dissipation arising from artificial viscosity, and tests with reduced artificial viscosity have reduced L2 error. A high-order smoothing kernel is needed in order to resolve the initial velocity amplitude of the seeded mode and inhibit excitation of spurious modes. We find that standard SPH with an artificial viscosity has no difficulty in correctly modelling the Kelvin-Helmholtz instability and yields convergent solutions.