Possible determination of high-lying single particle components with (p,d) reactions


Abstract in English

A detailed feasibility study on deducing the high-lying single-particle components (HLSPCs), which are important but used to be ignored, in the ground and low-lying excited states of even-even light nuclei is performed by analyses of $(p,d)$ reactions with uc{12}{C}, uc{24}{Mg}, uc{28}{Si}, and uc{40}{Ca} targets at 51.93 MeV. Coupled reaction channels (CRC) analyses have been made for $(p,d)$ transitions to the $j$-forbidden excited states in uc{11}{C} (${tfrac{5}{2}}^-$, 4.32 MeV), uc{23}{Mg} (${tfrac{7}{2}}^+$, 2.05 MeV), uc{27}{Si} (${tfrac{7}{2}}^+$, 2.16 MeV) and uc{39}{Ca} (${tfrac{9}{2}}^-$, 3.64 MeV), including the major allowed transition components together with direct components of HLSPCs. Spectroscopic amplitudes of the HLSPCs are deduced by fitting the angular distributions of the ground and the $j$-forbidden excited states simultaneously. The present analysis demonstrates for the first time that information about HLSPCs in atomic nuclei can be obtained from analysis of $(p,d)$ reactions.

Download