Do you want to publish a course? Click here

The Temperature and Ionization of Unshocked Ejecta in Cas A

48   0   0.0 ( 0 )
 Added by John C. Raymond
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The supernova remnant Cassiopeia A (Cas A) is one of the few remnants in which it is possible to observe unshocked ejecta. A deep 1.64 micron image of Cas A shows a patch of diffuse emission from unshocked ejecta, as well as brighter emission from Fast-Moving Knots and Quasi-Stationary Flocculi. Emission at 1.64 micron is usually interpreted as [Fe II] emission, and spectra of the bright knots confirm this by showing the expected emission in other [Fe II] lines. We performed NIR spectroscopy on the diffuse emission region and found that the unshocked ejecta emission does not show those lines, but rather the [Si I] 1.607 micron line. This means that the 1.64 micron line from the unshocked ejecta may be the [Si I] 1.645 line from the same upper level, rather than [Fe II]. We find that the [Si I] line is formed by recombination, and we use the [Si I] to [Si II] ratio to infer a temperature about 100 K, close to the value assumed for analysis of low frequency radio absorption and that inferred from emission by cool dust. Our results constrain estimates of Cas As total mass of unshocked ejecta that are extremely sensitive to temperature assumptions, but they do not resolve the ambiguity due to clumping.



rate research

Read More

Characterizing the ejecta in young supernova remnants is a requisite step towards a better understanding of stellar evolution. In Cassiopeia A the density and total mass remaining in the unshocked ejecta are important parameters for modeling its explosion and subsequent evolution. Low frequency (<100 MHz) radio observations of sufficient angular resolution offer a unique probe of unshocked ejecta revealed via free-free absorption against the synchrotron emitting shell. We have used the Very Large Array plus Pie Town Link extension to probe this cool, ionized absorber at 9 arcseconds and 18.5 arcseconds resolution at 74 MHz. Together with higher frequency data we estimate an electron density of 4.2 electrons per cubic centimeters and a total mass of 0.39 Solar masses with uncertainties of a factor of about 2. This is a significant improvement over the 100 electrons per cubic centimeter upper limit offered by infrared [S III] line ratios from the Spitzer Space Telescope. Our estimates are sensitive to a number of factors including temperature and geometry. However using reasonable values for each, our unshocked mass estimate agrees with predictions from dynamical models. We also consider the presence, or absence, of cold iron- and carbon-rich ejecta and how these affect our calculations. Finally we reconcile the intrinsic absorption from unshocked ejecta with the turnover in Cas As integrated spectrum documented decades ago at much lower frequencies. These and other recent observations below 100 MHz confirm that spatially resolved thermal absorption, when extended to lower frequencies and higher resolution, will offer a powerful new tool for low frequency astrophysics.
The ionization state and oxygen abundance distribution in a sample of polar-ring galaxies (PRGs) were studied from the long-slit spectroscopic observations carried out with the SCORPIO-2 focal reducer at the Russian 6-m telescope. The sample consists of 15 PRGs classified as `the best candidates in the SDSS-based Polar Ring Catalogue. The distributions of line-of-sight velocities of stellar and gaseous components have given kinematic confirmation of polar structures in 13 galaxies in the sample. We show that ionization by young stars dominates in the external parts of polar discs, while shocks have a significant contribution to gas excitation in the inner parts of polar structures. This picture was predicted earlier in a toy model implying the collision between gaseous clouds on polar orbits with the stellar disc gravitational potential well. The exception is a moderately inclined ring to the host galaxy NGC 5014: the accreted gas in the centre has already settled on the main plane and ionized by young stars, while the gas in the internal part of the ring is excited by shocks. The present study three times increases the number of polar structures with an available oxygen abundance estimation. The measured values of the gas metallicity almost do not depend on the galaxy luminosity. The radial [O/H] gradient in the considered polar rings is shallow or absent. No metal-poor gas was detected. We ruled out the scenario of the formation of polar rings due to cold accretion from cosmic filaments for the considered sample of PRGs.
223 - H.-Thomas Janka , 2017
Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A, and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.
90 - B. Posselt , G.G. Pavlov 2018
The Central Compact Object (CCO) in the Cassiopeia A supernova remnant is most likely a very young ($approx 300$ yr) neutron star. If a previously reported decrease of its surface temperature by 4% in 10 years could be confirmed, it would have profound theoretical implications for neutron star physics. However, the temperature decrease was inferred from Chandra ACIS data affected by instrumental effects which could cause time-dependent spectral distortions. Employing a different instrument setup which minimizes spectral distortions, our 2006 and 2012 Chandra spectra of the CCO did not show a statistically significant temperature decrease. Here, we present additional observations from 2015 taken in the same instrument mode. During the time span of 8.5 years, we detect no significant temperature decrease, using either carbon or hydrogen atmosphere models in the X-ray spectral fits. Our conservative $3sigma$ upper limits correspond to $<3.3$% and $<2.4$% temperature decrease in 10 years for carbon atmosphere model fits with varying or constant values of the absorbing hydrogen column density, respectively. The recently revised model for the ACIS filter contaminant has a strong effect on the fit results, reducing the significance of the previously reported temperature and flux changes. We expect that a further improved contaminant model and longer time coverage can significantly lower the upper limits in the future.
We present observations with VLT and HST of the broad emission lines from the inner ejecta and reverse shock of SN 1987A from 1999 until 2012 (days 4381 -- 9100 after explosion). We detect broad lines from H-alpha, H-beta, Mg I], Na I, [O I], [Ca II] and a feature at 9220 A. We identify the latter line with Mg II 9218, 9244,most likely pumped by Ly-alpha fluorescence. H-alpha, and H-beta both have a centrally peaked component, extending to 4500 km/s and a very broad component extending to 11,000 km/s, while the other lines have only the central component. The low velocity component comes from unshocked ejecta, heated mainly by X-rays from the circumstellar ring collision, whereas the broad component comes from faster ejecta passing through the reverse shock. The reverse shock flux in H-alpha has increased by a factor of 4-6 from 2000 to 2007. After that there is a tendency of flattening of the light curve, similar to what may be seen in soft X-rays and in the optical lines from the shocked ring. The core component seen in H-alpha, [Ca II] and Mg II has experienced a similar increase, consistent with that found from HST photometry. The ring-like morphology of the ejecta is explained as a result of the X-ray illumination, depositing energy outside of the core of the ejecta. The energy deposition in the ejecta of the external X-rays illumination is calculated using explosion models for SN 1987A and we predict that the outer parts of the unshocked ejecta will continue to brighten because of this. We finally discuss evidence for dust in the ejecta from line asymmetries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا