Do you want to publish a course? Click here

Comprehensive comparison of models for spectral energy distributions from 0.1 micron to 1 mm of nearby star-forming galaxies

95   0   0.0 ( 0 )
 Added by Leslie Hunt
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have fit the far-ultraviolet (FUV) to sub-millimeter (850 micron) spectral energy distributions (SEDs) of the 61 galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH). The fitting has been performed using three models: the Code for Investigating GALaxy Evolution (CIGALE), the GRAphite-SILicate approach (GRASIL), and the Multi-wavelength Analysis of Galaxy PHYSical properties (MAGPHYS). We have analyzed the results of the three codes in terms of the SED shapes, and by comparing the derived quantities with simple recipes for stellar mass (Mstar), star-formation rate (SFR), dust mass (Mdust), and monochromatic luminosities. Although the algorithms rely on different assumptions for star-formation history, dust attenuation and dust reprocessing, they all well approximate the observed SEDs and are in generally good agreement for the associated quantities. However, the three codes show very different behavior in the mid-infrared regime, in particular between 25 and 70 micron where there are no observational constraints for the KINGFISH sample. We find that different algorithms give discordant SFR estimates for galaxies with low specific SFR, and that the standard recipes for calculating FUV absorption overestimate the extinction compared to the SED-fitting results. Results also suggest that assuming a standard constant stellar mass-to-light ratio overestimates Mstar relative to the SED fitting, and we provide new SED-based formulations for estimating Mstar from WISE W1 (3.4 micron) luminosities and colors. From a Principal Component Analysis of Mstar, SFR, Mdust, and O/H, we reproduce previous scaling relations among Mstar, SFR, and O/H, and find that Mdust can be predicted to within roughly 0.3 dex using only Mstar and SFR.



rate research

Read More

120 - Xian Zhong Zheng 2007
We analyze the infrared (IR) spectral energy distributions (SEDs) for 10micron < lambda(rest) < 100micron for ~600 galaxies at z~0.7 in the extended Chandra Deep Field South by stacking their Spitzer 24, 70 and 160micron images. We place interesting constraints on the average IR SED shape in two bins: the brightest 25% of z~0.7 galaxies detected at 24micron, and the remaining 75% of individually-detected galaxies. Galaxies without individual detections at 24micron were not well-detected at 70micron and 160micron even through stacking. We find that the average IR SEDs of z~0.7 star-forming galaxies fall within the diversity of z~0 templates. While dust obscuration Lir/Luv seems to be only a function of star formation rate (SFR; ~ Lir+Luv), not of redshift, the dust temperature of star-forming galaxies (with SFR ~ 10 solar mass per year) at a given IR luminosity was lower at z~0.7 than today. We suggest an interpretation of this phenomenology in terms of dust geometry: intensely star-forming galaxies at z~0 are typically interacting, and host dense centrally-concentrated bursts of star formation and warm dust temperatures. At z~0.7, the bulk of intensely star-forming galaxies are relatively undisturbed spirals and irregulars, and we postulate that they have large amounts of widespread lower-density star formation, yielding lower dust temperatures for a given IR luminosity. We recommend what IR SEDs are most suitable for modeling intermediate redshift galaxies with different SFRs.
We gather infrared (IR) photometric data from 8 to 500 microns (Spitzer, WISE, IRAS and Herschel) for all of the HRS galaxies. Draine & Li (2007) models are fit to the data from which the stellar contribution has been carefully removed. We find that our photometric coverage is sufficient to constrain all of the models parameters and that a strong constraint on the 20-60 microns range is mandatory to estimate the relative contribution of the photo-dissociation regions to the IR SED. The SED models tend to systematically under-estimate the observed 500 microns flux densities, especially for low mass systems. We provide the output parameters for all of the galaxies: the minimum intensity of the interstellar radiation field (ISRF), the fraction of PAH, the relative contribution of PDR and evolved stellar population to the dust heating, the $M_{dust}$ and the $L_{IR}$. For a subsample of gas-rich galaxies, we analyze the relations between these parameters and the integrated properties of galaxies, such as $M_*$, SFR, metallicity, H$alpha$ and H-band surface brightness, and the FUV attenuation. A good correlation between the fraction of PAH and the metallicity is found implying a weakening of the PAH emission in galaxies with low metallicities. The intensity of the IRSF and the H-band and H$alpha$ surface brightnesses are correlated, suggesting that the diffuse dust component is heated by both the young stars in star forming regions and the diffuse evolved population. We use these results to provide a new set of IR templates calibrated with Herschel observations on nearby galaxies and a mean SED template to provide the z=0 reference for cosmological studies. For the same purpose, we put our sample on the SFR-$M_*$ diagram. The templates are compared to the most popular IR SED libraries, enlightening a large discrepancy between all of them in the 20-100 microns range.
The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out a comprehensive multi-wavelength survey on a sample of 75 nearby galaxies. The 1-850um spectral energy distributions are presented using broadband imaging data from Spitzer, 2MASS, ISO, IRAS, and SCUBA. The infrared colors derived from the globally-integrated Spitzer data are generally consistent with the previous generation of models that were developed based on global data for normal star-forming galaxies, though significant deviations are observed. Spitzers excellent sensitivity and resolution also allow a detailed investigation of the infrared spectral energy distributions for various locations within the three large, nearby galaxies NGC3031 (M81), NGC5194 (M51), and NGC7331. Strong correlations exist between the local star formation rate and the infrared colors f_nu(70um)/f_nu(160um) and f_nu(24um)/f_nu(160um), suggesting that the 24 and 70um emission are useful tracers of the local star formation activity level. Preliminary evidence indicates that variations in the 24um emission, and not variations in the emission from polycyclic aromatic hydrocarbons at 8um, drive the variations in the f_nu(8.0um)/f_nu(24um) colors within NGC3031, NGC5194, and NGC7331. If the galaxy-to-galaxy variations in spectral energy distributions seen in our sample are representative of the range present at high redshift then extrapolations of total infrared luminosities and star formation rates from the observed 24um flux will be uncertain at the factor-of-five level (total range). The corresponding uncertainties using the redshifted 8.0um flux (e.g. observed 24um flux for a z=2 source) are factors of 10-20. Considerable caution should be used when interpreting such extrapolated infrared luminosities.
We present PHANGS-ALMA, the first survey to map CO J=2-1 line emission at ~1 ~ 100pc spatial resolution from a representative sample of 90 nearby (d<~20 Mpc) galaxies that lie on or near the z=0 main sequence of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS-ALMA, each beam reaches the size of a typical individual giant molecular cloud (GMC), so that these data can be used to measure the demographics, life-cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z=0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, ALMA observations, and characteristics of the delivered ALMA data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with VLT/MUSE, HST, AstroSat, VLA, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle~5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1 resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS-ALMA public data release.
112 - Simon P. Driver 2008
The dominant source of electromagnetic energy in the Universe today (over ultraviolet, optical and near-infrared wavelengths) is starlight. However, quantifying the amount of starlight produced has proven difficult due to interstellar dust grains which attenuate some unknown fraction of the light. Combining a recently calibrated galactic dust model with observations of 10,000 nearby galaxies we find that (integrated over all galaxy types and orientations) only (11 +/- 2)% of the 0.1 micron photons escape their host galaxies; this value rises linearly (with log(lambda)) to (87 +/- 3)% at 2.1 micron. We deduce that the energy output from stars in the nearby Universe is (1.6+/-0.2) x 10^{35} W Mpc^{-3} of which (0.9+/-0.1) x 10^{35} W Mpc^{-3} escapes directly into the inter-galactic medium. Some further ramifications of dust attenuation are discussed, and equations that correct individual galaxy flux measurements for its effect are provided.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا