No Arabic abstract
We present a sub-arcsecond cross-match of Gaia DR2 against the INT Photometric H-alpha Survey of the Northern Galactic Plane Data Release 2 (IPHAS DR2) and the Kepler-INT Survey (KIS). The resulting value-added catalogues (VACs) provide additional precise photometry to the Gaia photometry (r, i and H-alpha for IPHAS, with additional U and g for KIS). In building the catalogue, proper motions given in gaia DR2 are wound back to match the epochs of IPHAS DR2, thus ensuring high proper motion objects are appropriately cross-matched. The catalogues contain 7,927,224 and 791,071 sources for IPHAS and KIS, respectively. The requirement of >5-sigma parallax detection for every included source means that distances out to 1--1.5 kpc are well covered. We define two additional parameters for each catalogued object: (i) $f_c$, a magnitude-dependent tracer of the quality of the Gaia astrometric fit; (ii) $f_{FP}$, the false-positive rate for parallax measurements determined from astrometric fits of a given quality at a given magnitude. Selection cuts based on these parameters can be used to clean colour-magnitude and colour-colour diagrams in a controlled and justified manner. We provide both full and ligh
Context. Although the Gaia catalogue on its own is a very powerful tool, it is the combination of this high-accuracy archive with other archives that will truly open up amazing possibilities for astronomical research. The advanced interoperation of archives is based on cross-matching, leaving the user with the feeling of working with one single data archive. The data retrieval should work not only across data archives but also across wavelength domains. The first step for a seamless access to the data is the computation of the cross-match between Gaia and external surveys. Aims. We describe the adopted algorithms and results of the pre-computed cross-match of the Gaia Data Release 2 (DR2) catalogue with dense surveys (Pan-STARRS1 DR1, 2MASS, SDSS DR9, GSC 2.3, URAT-1, allWISE, PPMXL, and APASS DR9) and sparse catalogues (Hipparcos2, Tycho-2, and RAVE 5). Methods. A new algorithm is developed specifically for sparse catalogues. Improvements and changes with respect to the algorithm adopted for DR1 are described in detail. Results. The outputs of the cross-match are part of the official Gaia DR2 catalogue. The global analysis of the cross-match results is also presented.
In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.
The ESA cornerstone mission Gaia was successfully launched in 2013, and is now scanning the sky to accurately measure the positions and motions of about two billion point-like sources of 3<V<20.5 mag, with the main goal of reconstructing the 6D phase space structure of the Milky Way. The typical uncertainties in the astrometry will be in the range 30-500 muas. The sky will be repeatedly scanned (70 times on average) for five years or more, adding the time dimension, and the Gaia data are complemented by mmag photometry in three broad bands, plus line-of-sight velocities from medium resolution spectroscopy for brighter stars. This impressive dataset is having a large impact on various areas of astrophysics, from solar system objects to distant quasars, from nearby stars to unresolved galaxies, from binaries and extrasolar planets to light bending experiments. This invited review paper presents an overview of the Gaia mission and describes why, to reach the goal performances in astrometry and to adequately map the Milky Way kinematics, Gaia was also equipped with state-of-the-art photometers and spectrographs, enabling us to explore much more than the 6D phase-space of positions and velocities. Scientific highlights of the first two Gaia data releases are briefly presented.
We present a catalogue of point-like H{alpha}-excess sources in the Northern Galactic Plane. Our catalogue is created using a new technique that leverages astrometric and photomeric information from Gaia to select H{alpha}-bright outliers in the INT Photometric H{alpha} Survey of the Northern Galactic Plane (IPHAS), across the colour-absolute magnitude diagram. To mitigate the selection biases due to stellar population mixing and to extinction, the investigated objects are first partitioned with respect to their positions in the Gaia colour-absolute magnitude space, and in the Galactic coordinates space, respectively. The selection is then performed on both partition types independently. Two significance parameters are assigned to each target, one for each partition type. These represent a quantitative degree of confidence that the given source is a reliable H{alpha}-excess candidate, with reference to the other objects in the corresponding partition. Our catalogue provides two flags for each source, both indicating the significance level of the H{alpha}-excess. By analysing their intensity in the H{alpha} narrow band, 28,496 objects out of 7,474,835 are identified as H{alpha}-excess candidates with a significance higher than 3. The completeness fraction of the H{alpha} outliers selection is between 3% and 5%. The suggested 5{sigma} conservative cut yields a purity fraction of 81.9%.
Context: Blue horizontal-branch stars are very old objects that can be used as markers in studies of the Galactic structure and formation history. To create a clean sky catalogue of blue horizontal-branch stars, we cross-matched the Gaia data release 2 (DR2) dataset with existing reference catalogues to define selection criteria based on Gaia DR2 parameters. Following the publication of Gaia early data release 3 (EDR3), these methods were verified and subsequently applied to this latest release. Aims: The purpose of this catalogue is to identify a set of blue horizontal-branch star candidates that have been selected using photometric and astrometric observations and exhibits a low contamination rate. Methods: We cross-matched reference blue horizontal-branch datasets with the Gaia DR2 database and defined two sets of selection criteria. Firstly, in Gaia DR2 - colour and absolute G magnitude space, and secondly, in Gaia DR2 - colour and reduced proper motion space. The main-sequence contamination in both subsets of the catalogue was reduced, at the expense of completeness, by concentrating on the Milky Ways Galactic halo, where relatively young main-sequence stars were not expected. Results: We present a catalogue, based on Gaia EDR3, of 57,377 blue horizontal-branch stars. The Gaia EDR3 parallax was used in selecting 16,794 candidates and the proper motions were used to identify a further 40,583 candidates.