No Arabic abstract
The quest to discover exoplanets is one of the most important missions in astrophysics, and is widely performed using the transit method, which allows for the detection of exoplanets down to the size of Mercury. However, to confirm these detections, additional vetting is mandatory. We selected six K2 targets from campaigns #1 to #8 that show transit light curves corresponding to Earth-sized to Neptune-sized exoplanets. We aim to discard some scenarios that could mimic an exoplanetary transit, leading to a misinterpretation of the data. We performed direct imaging observations using the SPHERE/VLT instrument to probe the close environment of these stars. For five of the K2 targets, we report no detection and we give the detection limits. For EPIC 206011496, we detect a 0.38 $pm$ 0.06 $M_{odot}$ companion at a separation of 977.12 $pm$ 0.73 mas (140.19 $pm$ 0.11 au). The spectral analysis corresponds to an M4-7 star, and the analysis of the proper motion shows that it is bounded to the primary star. EPIC 206011496 also hosts an Earth-like planetary candidate. If it transits the primary star, its radius is consistent with that of a super-Earth. However, if it transits the companion star, it falls into the mini-Neptune regime.
We search for signs of ongoing planet-disk interaction and study the distribution of small grains at the surface of the transition disk around RXJ1615.3-3255 (RX J1615). We observed RXJ1615 with VLT/SPHERE. We image the disk for the first time in scattered light and detect two arcs, two rings, a gap and an inner disk with marginal evidence for an inner cavity. The shapes of the arcs suggest that they probably are segments of full rings. Ellipse fitting for the two rings and inner disk yield a disk inclination i = 47 pm 2 degrees and find semi-major axes of 1.50 pm 0.01 (278 au), 1.06 pm 0.01 (196 au) and 0.30 pm 0.01 (56 au), respectively. We determine the scattering surface height above the midplane, based on the projected ring center offsets. Nine point sources are detected between 2.1 and 8.0 separation and considered as companion candidates. With NACO data we recover four of the nine point sources, which we determine not to be co-moving, and therefore unbound to the system. We present the first detection of the transition disk of RXJ1615 in scattered light. The height of the rings indicate limited flaring of the disk surface, which enables partial self-shadowing in the disk. The outermost arc either traces the bottom of the disk or it is another ring with semi-major axis > 2.35 (435 au). We explore both scenarios, extrapolating the complete shape of the feature, which will allow to distinguish between the two in future observations. The most interesting scenario, where the arc traces the bottom of the outer ring, requires the disk truncated at r ~ 360 au. The closest companion candidate, if indeed orbiting the disk at 540 au, would then be the most likely cause for such truncation. This companion candidate, as well as the remaining four, require follow up observations to determine if they are bound to the system.
CONTEXT. Little is known about the planetary systems around single white dwarfs although there is strong evidence that they do exist. AIMS. We performed a pilot study with the extreme-AO system on the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) on the Very Large Telescopes (VLT) to look for giant planets around a young white dwarf, GD 50. METHODS. We were awarded science verification time on the new ESO instrument SPHERE. Observations were made with the InfraRed Dual-band Imager and Spectrograph in classical imaging mode in H band. RESULTS. Despite the faintness of the target (14.2 mag in R band), the AO loop was closed and a strehl of 37% was reached in H band. No objects were detected around GD 50. We achieved a 5-sigma contrast of 6.2, 8.0 and 8.25 mags at 0{farcs}2, 0{farcs}4 and 0{farcs}6 and beyond, respectively. We exclude any substellar objects more massive than 4.0 M$_textrm{J}$ at 6.2 AU, 2.9 M$_textrm{J}$ at 12.4 AU and 2.8 M$_textrm{J}$ at 18.6 AU and beyond. This rivals the previous upper limit set by Spitzer. We further show that SPHERE is the most promising instrument available to search for close-in substellar objects around nearby white dwarfs.
Ultra-short period (USP) planets are a class of low mass planets with periods shorter than one day. Their origin is still unknown, with photo-evaporation of mini-Neptunes and in-situ formation being the most credited hypotheses. Formation scenarios differ radically in the predicted composition of USP planets, it is therefore extremely important to increase the still limited sample of USP planets with precise and accurate mass and density measurements. We report here the characterization of an USP planet with a period of 0.28 days around K2-141 (EPIC 246393474), and the validation of an outer planet with a period of 7.7 days in a grazing transit configuration. We derived the radii of the planets from the K2 light curve and used high-precision radial velocities gathered with the HARPS-N spectrograph for mass measurements. For K2-141b we thus inferred a radius of $1.51pm0.05~R_oplus$ and a mass of $5.08pm0.41~M_oplus$, consistent with a rocky composition and lack of a thick atmosphere. K2-141c is likely a Neptune-like planet, although due to the grazing transits and the non-detection in the RV dataset, we were not able to put a strong constraint on its density. We also report the detection of secondary eclipses and phase curve variations for K2-141b. The phase variation can be modeled either by a planet with a geometric albedo of $0.30 pm 0.06$ in the Kepler bandpass, or by thermal emission from the surface of the planet at $sim$3000K. Only follow-up observations at longer wavelengths will allow us to distinguish between these two scenarios.
Context. Direct imaging of debris discs gives important information about their nature, their global morphology, and allows us to identify specific structures possibly in connection with the presence of gravitational perturbers. It is the most straightforward technique to observe planetary systems as a whole. Aims. We present the first resolved images of the debris disc around the young F-type star HD 160305, detected in scattered light using the VLT/SPHERE instrument in the near infrared. Methods. We used a post-processing method based on angular differential imaging and synthetic images of debris discs produced with a disc modelling code (GRaTer) to constrain the main characteristics of the disc around HD 160305. All of the point sources in the field of the IRDIS camera were analysed with an astrometric tool to determine whether they are bound objects or background stars. Results. We detect a very inclined (~ 82{deg}) ring-like debris disc located at a stellocentric distance of about 86au (deprojected width ~27 au). The disc displays a brightness asymmetry between the two sides of the major axis, as can be expected from scattering properties of dust grains. We derive an anisotropic scattering factor g>0.5. A second right-left asymmetry is also observed with respect to the minor axis. We measure a surface brightness ratio of 0.73 $pm$ 0.18 between the bright and the faint sides. Because of the low signal-to-noise ratio (S/N) of the images we cannot easily discriminate between several possible explanations for this left-right asymmetry, such as perturbations by an unseen planet, the aftermath of the breakup of a massive planetesimal, or the pericenter glow effect due to an eccentric ring. Two epochs of observations allow us to reject the companionship hypothesis for the 15 point sources present in the field.
Dusty debris disks around pre- and main-sequence stars are potential signposts for the existence of planetesimals and exoplanets. Giant planet formation is therefore expected to play a key role in the evolution of the disk. This is indirectly confirmed by extant sub-millimeter near-infrared images of young protoplanetary and cool dusty debris disks around main sequence stars usually showing substantial spatial structures. A majority of recent discoveries of imaged giant planets have been obtained around young, early-type stars hosting a circumstellar disk. In this context, we have carried out a direct imaging program designed to maximize our chances of giant planet discovery and targeting twenty-two young, early-type stars. About half of them show indication of multi-belt architectures. Using the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-constrast coronagraphic differential near-infrared images, we have conducted a systematic search in the close environment of these young, dusty and early-type stars. We confirmed that companions detected around HIP 34276, HIP 101800 and HIP 117452 are stationary background sources and binary companions. The companion candidates around HIP 8832, HIP 16095 and HIP 95619 are determined as background contamination. For stars for which we infer the presence of debris belts, a theoretical minimum mass for planets required to clear the debris gaps can be calculated . The dynamical mass limit is at least $0.1 M_J$ and can exceed $1 M_J$. Direct imaging data is typically sensitive to planets down to $sim 3.6 M_J$ at 1 $$, and $1.7 M_J$ in the best case. These two limits tightly constrain the possible planetary systems present around each target. These systems will be probably detectable with the next generation of planet imagers.