Do you want to publish a course? Click here

Resolving CO (2-1) in z~1.6 Gas-Rich Cluster Galaxies with ALMA: Rotating Molecular Gas Disks with Possible Signatures of Gas Stripping

125   0   0.0 ( 0 )
 Added by Allison Noble
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first spatially-resolved observations of molecular gas in a sample of cluster galaxies beyond z>0.1. Using ALMA, we detect CO (2-1) in 8 z~1.6 cluster galaxies, all within a single 70 primary beam, in under 3 hours of integration time. The cluster, SpARCS-J0225, is replete with gas-rich galaxies in close proximity. It thus affords an efficient multiplexing strategy to build up the first sample of resolved CO in distant galaxy clusters. Mapping out the kinematic structure and morphology of the molecular gas on 3.5 kpc scales reveals rotating gas disks in the majority of the galaxies, as evidenced by smooth velocity gradients. Detailed velocity maps also uncover kinematic peculiarities, including a central gas void, a merger, and a few one-sided gas tails. We compare the extent of the molecular gas component to that of the optical stellar component, measured with rest-frame optical HST imaging. We find that the cluster galaxies, while broadly consistent with a ratio of unity for stellar-to-gas effective radii, have a moderately larger ratio compared to the coeval field; this is consistent with the more pronounced trend in the low-redshift Universe. Thus, at first glance, the z~1.6 cluster galaxies generally look like galaxies infalling from the field, with typical main-sequence star formation rates and massive molecular gas reservoirs situated in rotating disks. However, there are potentially important differences from their field counterparts, including elevated gas fractions, slightly smaller CO disks, and possible asymmetric gas tails. Taken in tandem, these signatures are tentative evidence for gas-stripping in the z~1.6 cluster. However, the current sample size of spatially-resolved molecular gas in galaxies at high redshift is small, and verification of these trends will require much larger samples of both cluster and field galaxies.



rate research

Read More

We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z~1.6, constituting the largest sample of molecular gas measurements in z>1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5sigma detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z~1.6 cluster environments. We measure sizable gas reservoirs of 0.5-2x10^11 solar masses in these objects, with high gas fractions and long depletion timescales, averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z=1.6 toward enhanced gas fractions, at a level of ~4sigma, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.
We present an analysis of the molecular gas properties, based on CO(2 - 1) emission, of twelve starburst galaxies at z~1.6 selected by having a boost (>~4x) in their star formation rate (SFR) above the average star-forming galaxy at an equivalent stellar mass. ALMA observations are acquired of six additional galaxies than previously reported through our effort. As a result of the larger statistical sample, we significantly detect, for the first time at high-z, a systematically lower L_CO/L_IR ratio in galaxies lying above the star-forming `main sequence (MS). Based on an estimate of alpha_CO (i.e., the ratio of molecular gas mass to L_CO(1-0)), we convert the observational quantities (e.g., L_CO/L_IR) to physical units (M_gas/SFR) that represent the gas depletion time or its inverse, the star formation efficiency. We interpret the results as indicative of the star formation efficiency increasing in a continuous fashion from the MS to the starburst regime, whereas the gas fractions remain comparable to those of MS galaxies. Although, the balance between an increase in star-formation efficiency or gas fraction depends on the adopted value of alpha_CO as discussed.
We present the first results of the ALMA Fornax Cluster Survey (AlFoCS): a complete ALMA survey of all members of the Fornax galaxy cluster that were detected in HI or in the far infrared with Herschel. The sample consists of a wide variety of galaxy types, ranging from giant ellipticals to spiral galaxies and dwarfs, located in all (projected) areas of the cluster. It spans a mass range of 10^(~8.5 - 11) M_Sun. The CO(1-0) line was targeted as a tracer for the cold molecular gas, along with the associated 3 mm continuum. CO was detected in 15 of the 30 galaxies observed. All 8 detected galaxies with stellar masses below 3x10^9 M_Sun have disturbed molecular gas reservoirs, only 6 galaxies are regular/undisturbed. This implies that Fornax is still a very active environment, having a significant impact on its members. Both detections and non-detections occur at all projected locations in the cluster. Based on visual inspection, and the detection of molecular gas tails in alignment with the direction of the cluster centre, in some cases ram pressure stripping is a possible candidate for disturbing the molecular gas morphologies and kinematics. Derived gas fractions in almost all galaxies are lower than expected for field objects with the same mass, especially for the galaxies with disturbed molecular gas, with differences of sometimes more than an order of magnitude. The detection of these disturbed molecular gas reservoirs reveals the importance of the cluster environment for even the tightly bound molecular gas phase.
The HRS is a complete volume-limited sample of nearby objects including Virgo cluster and isolated objects. Using a recent compilation of HI and CO data we study the effects of the cluster on the molecular gas content of spiral galaxies. We first identify M* as the scaling variable that traces the total H2 mass of galaxies better. We show that, on average, HI-deficient galaxies are significantly offset from the M(H2) vs. M* relation for HI-normal galaxies. We use the M(H2) vs. M* scaling relation to define the H2-deficiency parameter. This parameter shows a weak and scattered relation with the HI-def, here taken as a proxy for galaxy interactions with the cluster environment. We also show that, as for the HI, the extent of the H2 disc decreases with increasing HI-deficiency. These results show that cluster galaxies have, on average, a lower H2 content than similar objects in the field. The slope of the H2-def vs. HI-def relation is less than 1, while the D(HI)/D(i) vs. HI-def relation is steeper than the D(CO)/D(i) vs. HI-def relation, thereby indicating that the H2 gas is removed less efficiently than the HI. This result can be understood if the HI is distributed on a flat disc more extended than the stellar disc, thus less anchored to the gravitational potential well of the galaxy than the H2. There is a clear trend between the NUV-i colour and H2-def, which suggests that H2 removal quenches the activity of star formation. This causes galaxies migrate from the blue cloud to the green valley and, eventually, to the red sequence. The total gas-consumption timescale of gas deficient cluster galaxies is comparable to that of isolated systems, and is significantly larger than the typical timescale for total gas removal in a ram pressure stripping process, thus suggesting that ram pressure, rather than starvation, is the dominant process driving the evolution of these cluster galaxies.
65 - Anne Klitsch 2021
Absorption-selected galaxies offer an effective way to study low-mass galaxies at high redshift. However, the physical properties of the underlying galaxy population remains uncertain. In particular, the multiphase circum-galactic medium is thought to hold key information on gas flows into and out of galaxies that are vital for galaxy evolution models. Here we present ALMA observations of CO molecular gas in host galaxies of H_2-bearing absorbers. In our sample of six absorbers we detect molecular gas-rich galaxies in five absorber fields although we did not target high-metallicity (>50 per cent solar) systems for which previous studies reported the highest detection rate. Surprisingly, we find that the majority of the absorbers are associated with multiple galaxies rather than single haloes. Together with the large impact parameters these results suggest that the H_2-bearing gas seen in absorption is not part of an extended disk, but resides in dense gas pockets in the circum-galactic and intra-group medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا