Do you want to publish a course? Click here

The number of master integrals as Euler characteristic

52   0   0.0 ( 0 )
 Added by Christian Bogner
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We give a brief introduction to a parametric approach for the derivation of shift relations between Feynman integrals and a result on the number of master integrals. The shift relations are obtained from parametric annihilators of the Lee-Pomeransky polynomial $mathcal{G}$. By identification of Feynman integrals as multi-dimensional Mellin transforms, we show that this approach generates every shift relation. Feynman integrals of a given family form a vector space, whose finite dimension is naturally interpreted as the number of master integrals. This number is an Euler characteristic of the polynomial $mathcal{G}$.

rate research

Read More

For a fixed Feynman graph one can consider Feynman integrals with all possible powers of propagators and try to reduce them, by linear relations, to a finite subset of integrals, the so-called master integrals. Up to now, there are numerous examples of reduction procedures resulting in a finite number of master integrals for various families of Feynman integrals. However, up to now it was just an empirical fact that the reduction procedure results in a finite number of irreducible integrals. It this paper we prove that the number of master integrals is always finite.
A number of irreducible master integrals for L-loop sunrise-type and bubble Feynman diagrams with generic values of masses and external momenta are explicitly evaluated via Mellin-Barnes representation.
We investigate the delicate interplay between the types of singular fibers in elliptic fibrations of Calabi-Yau threefolds (used to formulate F-theory) and the matter representation of the associated Lie algebra. The main tool is the analysis and the appropriate interpretation of the anomaly formula for six-dimensional supersymmetric theories. We find that this anomaly formula is geometrically captured by a relation among codimension two cycles on the base of the elliptic fibration, and that this relation holds for elliptic fibrations of any dimension. We introduce a Tate cycle which efficiently describes this relationship, and which is remarkably easy to calculate explicitly from the Weierstrass equation of the fibration. We check the anomaly cancellation formula in a number of situations and show how this formula constrains the geometry (and in particular the Euler characteristic) of the Calabi-Yau threefold.
The standard procedure when evaluating integrals of a given family of Feynman integrals, corresponding to some Feynman graph, is to construct an algorithm which provides the possibility to write any particular integral as a linear combination of so-called master integrals. To do this, public (AIR, FIRE, REDUZE, LiteRed, KIRA) and private codes based on solving integration by parts relations are used. However, the choice of the master integrals provided by these codes is not always optimal. We present an algorithm to improve a given basis of the master integrals, as well as its computer implementation; see also a competitive variant [1].
The Euler characteristic $chi =|V|-|E|$ and the total length $mathcal{L}$ are the most important topological and geometrical characteristics of a metric graph. Here, $|V|$ and $|E|$ denote the number of vertices and edges of a graph. The Euler characteristic determines the number $beta$ of independent cycles in a graph while the total length determines the asymptotic behavior of the energy eigenvalues via the Weyls law. We show theoretically and confirm experimentally that the Euler characteristic can be determined (heard) from a finite sequence of the lowest eigenenergies $lambda_1, ldots, lambda_N$ of a simple quantum graph, without any need to inspect the system visually. In the experiment quantum graphs are simulated by microwave networks. We demonstrate that the sequence of the lowest resonances of microwave networks with $beta leq 3$ can be directly used in determining whether a network is planar, i.e., can be embedded in the plane. Moreover, we show that the measured Euler characteristic $chi$ can be used as a sensitive revealer of the fully connected graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا