Do you want to publish a course? Click here

Finding Better Topologies for Deep Convolutional Neural Networks by Evolution

257   0   0.0 ( 0 )
 Added by Honglei Zhang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Due to the nonlinearity of artificial neural networks, designing topologies for deep convolutional neural networks (CNN) is a challenging task and often only heuristic approach, such as trial and error, can be applied. An evolutionary algorithm can solve optimization problems where the fitness landscape is unknown. However, evolutionary algorithms are computing resource intensive, which makes it difficult for problems when deep CNNs are involved. In this paper, we propose an evolutionary strategy to find better topologies for deep CNNs. Incorporating the concept of knowledge inheritance and knowledge learning, our evolutionary algorithm can be executed with limited computing resources. We applied the proposed algorithm in finding effective topologies of deep CNNs for the image classification task using CIFAR-10 dataset. After the evolution, we analyzed the topologies that performed well for this task. Our studies verify the techniques that have been commonly used in human designed deep CNNs. We also discovered that some of the graph properties greatly affect the system performance. We applied the guidelines learned from the evolution and designed new network topologies that outperform Residual Net with less layers on CIFAR-10, CIFAR-100, and SVHN dataset.



rate research

Read More

Optimization for deep networks is currently a very active area of research. As neural networks become deeper, the ability in manually optimizing the network becomes harder. Mini-batch normalization, identification of effective respective fields, momentum updates, introduction of residual blocks, learning rate adoption, etc. have been proposed to speed up the rate of convergent in manual training process while keeping the higher accuracy level. However, the problem of finding optimal topological structure for a given problem is becoming a challenging task need to be addressed immediately. Few researchers have attempted to optimize the network structure using evolutionary computing approaches. Among them, few have successfully evolved networks with reinforcement learning and long-short-term memory. A very few has applied evolutionary programming into deep convolution neural networks. These attempts are mainly evolved the network structure and then subsequently optimized the hyper-parameters of the network. However, a mechanism to evolve the deep network structure under the techniques currently being practiced in manual process is still absent. Incorporation of such techniques into chromosomes level of evolutionary computing, certainly can take us to better topological deep structures. The paper concludes by identifying the gap between evolutionary based deep neural networks and deep neural networks. Further, it proposes some insights for optimizing deep neural networks using evolutionary computing techniques.
We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted features. We compare CRNN with three CNN structures that have been used for music tagging while controlling the number of parameters with respect to their performance and training time per sample. Overall, we found that CRNNs show a strong performance with respect to the number of parameter and training time, indicating the effectiveness of its hybrid structure in music feature extraction and feature summarisation.
Interpreting the decision logic behind effective deep convolutional neural networks (CNN) on images complements the success of deep learning models. However, the existing methods can only interpret some specific decision logic on individual or a small number of images. To facilitate human understandability and generalization ability, it is important to develop representative interpretations that interpret common decision logics of a CNN on a large group of similar images, which reveal the common semantics data contributes to many closely related predictions. In this paper, we develop a novel unsupervised approach to produce a highly representative interpretation for a large number of similar images. We formulate the problem of finding representative interpretations as a co-clustering problem, and convert it into a submodular cost submodular cover problem based on a sample of the linear decision boundaries of a CNN. We also present a visualization and similarity ranking method. Our extensive experiments demonstrate the excellent performance of our method.
78 - Ali Athar 2018
Convolutional Neural Networks (CNNs) are becoming increasingly popular due to their superior performance in the domain of computer vision, in applications such as objection detection and recognition. However, they demand complex, power-consuming hardware which makes them unsuitable for implementation on low-power mobile and embedded devices. In this paper, a description and comparison of various techniques is presented which aim to mitigate this problem. This is primarily achieved by quantizing the floating-point weights and activations to reduce the hardware requirements, and adapting the training and inference algorithms to maintain the networks performance.
Neuroevolution is a process of training neural networks (NN) through an evolutionary algorithm, usually to serve as a state-to-action mapping model in control or reinforcement learning-type problems. This paper builds on the Neuro Evolution of Augmented Topologies (NEAT) formalism that allows designing topology and weight evolving NNs. Fundamental advancements are made to the neuroevolution process to address premature stagnation and convergence issues, central among which is the incorporation of automated mechanisms to control the population diversity and average fitness improvement within the neuroevolution process. Insights into the performance and efficiency of the new algorithm is obtained by evaluating it on three benchmark problems from the Open AI platform and an Unmanned Aerial Vehicle (UAV) collision avoidance problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا