CrowdExpress: A Probabilistic Framework for On-Time Crowdsourced Package Deliveries


Abstract in English

Speed and cost of logistics are two major concerns to on-line shoppers, but they generally conflict with each other in nature. To alleviate the contradiction, we propose to exploit existing taxis that are transporting passengers on the street to relay packages collaboratively, which can simultaneously lower the cost and accelerate the speed. Specifically, we propose a probabilistic framework containing two phases called CrowdExpress for the on-time package express deliveries. In the first phase, we mine the historical taxi GPS trajectory data offline to build the package transport network. In the second phase, we develop an online adaptive taxi scheduling algorithm to find the path with the maximum arriving-on-time probability on-the-fly upon real- time requests, and direct the package routing accordingly. Finally, we evaluate the system using the real-world taxi data generated by over 19,000 taxis in a month in the city of New York, US. Results show that around 9,500 packages can be delivered successfully on time per day with the success rate over 94%, moreover, the average computation time is within 25 milliseconds.

Download