Do you want to publish a course? Click here

Mathematical models of collective dynamics and self-organization

72   0   0.0 ( 0 )
 Added by Pierre Degond
 Publication date 2018
  fields Physics
and research's language is English
 Authors Pierre Degond




Ask ChatGPT about the research

In this paper, we begin by reviewing a certain number of mathematical challenges posed by the modelling of collective dynamics and self-organization. Then, we focus on two specific problems, first, the derivation of fluid equations from particle dynamics of collective motion and second, the study of phase transitions and the stability of the associated equilibria.



rate research

Read More

In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we first review the basic ideas behind fractal theory and SOC. We then briefly review some results in the field of complex networks, and some of the models that have been proposed. Finally, we present a self-organized model recently proposed by Garlaschelli et al. [Nat. Phys. 3, 813 (2007)] that couples the fitness network model defined by Caldarelli et al. [Phys. Rev. Lett. 89, 258702 (2002)] with the evolution model proposed by Bak and Sneppen [Phys. Rev. Lett. 71, 4083 (1993)] as a prototype of SOC. Remarkably, we show that the results obtained for the two models separately change dramatically when they are coupled together. This indicates that self-organized networks may represent an entirely novel class of complex systems, whose properties cannot be straightforwardly understood in terms of what we have learnt so far.
Monodromy matrices of the $tau_2$ model are known to satisfy a Yang--Baxter equation with a six-vertex $R$-matrix as the intertwiner. The commutation relations of the elements of the monodromy matrices are completely determined by this $R$-matrix. We show the reason why in the superintegrable case the eigenspace is degenerate, but not in the general case. We then show that the eigenspaces of special CSOS models descending from the chiral Potts model are also degenerate. The existence of an $L({mathfrak{sl}}_2)$ quantum loop algebra (or subalgebra) in these models is established by showing that the Serre relations hold for the generators. The highest weight polynomial (or the Drinfeld polynomial) of the representation is obtained by using the method of Baxter for the superintegrable case. As a byproduct, the eigenvalues of all such CSOS models are given explicitly.
We discuss spin models on complete graphs in the mean-field (infinite-vertex) limit, especially the classical XY model, the Toy model of the Higgs sector, and related generalizations. We present a number of results coming from the theory of large deviations and Steins method, in particular, Cramer and Sanov-type results, limit theorems with rates of convergence, and phase transition behavior for these models.
397 - Yacine Ikhlef , John Cardy 2009
We define parafermionic observables in various lattice loop models, including examples where no Kramers-Wannier duality holds. For a particular rhombic embedding of the lattice in the plane and a value of the parafermionic spin these variables are discretely holomorphic (they satisfy a lattice version of the Cauchy-Riemann equations) as long as the Boltzmann weights satisfy certain linear constraints. In the cases considered, the weights then also satisfy the critical Yang-Baxter equations, with the spectral parameter being related linearly to the angle of the elementary rhombus.
We point out a surprising feature of diffusion in inhomogeneous media: under suitable conditions, the rectification of the Brownian paths by a diffusivity gradient can result in initially spread tracers spontaneously concentrating. This geometric ratchet effect demonstrates that, in violation of the classical statements of the second law of (non-equilibrium) thermodynamics, self-organization can take place in thermodynamic systems at local equilibrium without heat being produced or exchanged with the environment. We stress the role of Bayesian priors in a suitable reformulation of the second law accommodating this geometric ratchet effect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا