Do you want to publish a course? Click here

Cost Sharing in Two-Sided Markets

120   0   0.0 ( 0 )
 Added by Kostas Kollias
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Motivated by the emergence of popular service-based two-sided markets where sellers can serve multiple buyers at the same time, we formulate and study the {em two-sided cost sharing} problem. In two-sided cost sharing, sellers incur different costs for serving different subsets of buyers and buyers have different values for being served by different sellers. Both buyers and sellers are self-interested agents whose values and costs are private information. We study the problem from the perspective of an intermediary platform that matches buyers to sellers and assigns prices and wages in an effort to maximize welfare (i.e., buyer values minus seller costs) subject to budget-balance in an incentive compatible manner. In our markets of interest, agents trade the (often same) services multiple times. Moreover, the value and cost for the same service differs based on the context (e.g., location, urgency, weather conditions, etc). In this framework, we design mechanisms that are efficient, ex-ante budget-balanced, ex-ante individually rational, dominant strategy incentive compatible, and ex-ante in the core (a natural generalization of the core that we define here).



rate research

Read More

Two-sided matching platforms provide users with menus of match recommendations. To maximize the number of realized matches between the two sides (referred here as customers and suppliers), the platform must balance the inherent tension between recommending customers more potential suppliers to match with and avoiding potential collisions. We introduce a stylized model to study the above trade-off. The platform offers each customer a menu of suppliers, and customers choose, simultaneously and independently, either a supplier from their menu or to remain unmatched. Suppliers then see the set of customers that have selected them, and choose to either match with one of these customers or to remain unmatched. A match occurs if a customer and a supplier choose each other (in sequence). Agents choices are probabilistic, and proportional to public scores of agents in their menu and a score that is associated with remaining unmatched. The platforms problem is to construct menus for costumers to maximize the number of matches. This problem is shown to be strongly NP-hard via a reduction from 3-partition. We provide an efficient algorithm that achieves a constant-factor approximation to the expected number of matches.
We design novel mechanisms for welfare-maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order to maximize utility. Our mechanisms are designed based on a powerful correspondence between two-sided markets and prophet inequalities. They satisfy individual rationality, dominant-strategy incentive compatibility, budget-balance constraints and give constant-factor approximations to the optimal social welfare. We improve previous results in several settings: Our main focus is on matroid double auctions, where the set of buyers who obtain an item needs to be independent in a matroid. We construct two mechanisms, the first being a $1/3$-approximation of the optimal social welfare satisfying strong budget-balance and requiring the agents to trade in a customized order, the second being a $1/2$-approximation, weakly budget-balanced and able to deal with online arrival determined by an adversary. In addition, we construct constant-factor approximations in two-sided markets when buyers need to fulfill a knapsack constraint. Also, in combinatorial double auctions, where buyers have valuation functions over item bundles instead of being interested in only one item, using similar techniques, we design a mechanism which is a $1/2$-approximation of the optimal social welfare, strongly budget-balanced and can deal with online arrival of agents in an adversarial order.
We consider the problem of welfare maximization in two-sided markets using simple mechanisms that are prior-independent. The Myerson-Satterthwaite impossibility theorem shows that even for bilateral trade, there is no feasible (IR, truthful, budget balanced) mechanism that has welfare as high as the optimal-yet-infeasible VCG mechanism, which attains maximal welfare but runs a deficit. On the other hand, the optimal feasible mechanism needs to be carefully tailored to the Bayesian prior, and is extremely complex, eluding a precise description. We present Bulow-Klemperer-style results to circumvent these hurdles in double-auction markets. We suggest using the Buyer Trade Reduction (BTR) mechanism, a variant of McAfees mechanism, which is feasible and simple (in particular, deterministic, truthful, prior-independent, anonymous). First, in the setting where buyers and sellers values are sampled i.i.d. from the same distribution, we show that for any such market of any size, BTR with one additional buyer whose value is sampled from the same distribution has expected welfare at least as high as the optimal in the original market. We then move to a more general setting where buyers values are sampled from one distribution and sellers from another, focusing on the case where the buyers distribution first-order stochastically dominates the sellers. We present bounds on the number of buyers that, when added, guarantees that BTR in the augmented market have welfare at least as high as the optimal in the original market. Our lower bounds extend to a large class of mechanisms, and all of our results extend to adding sellers instead of buyers. In addition, we present positive results about the usefulness of pricing at a sample for welfare maximization in two-sided markets under the above two settings, which to the best of our knowledge are the first sampling results in this context.
This paper is an attempt to deal with the recent realization (Vazirani, Yannakakis 2021) that the Hylland-Zeckhauser mechanism, which has remained a classic in economics for one-sided matching markets, is likely to be highly intractable. HZ uses the power of a pricing mechanism, which has endowed it with nice game-theoretic properties. Hosseini and Vazirani (2021) define a rich collection of Nash-bargaining-based models for one-sided and two-sided matching markets, in both Fisher and Arrow-Debreu settings, together with implementations using available solvers, and very encouraging experimental results. This naturally raises the question of finding efficient combinatorial algorithms for these models. In this paper, we give efficient combinatorial algorithms based on the techniques of multiplicative weights update (MWU) and conditional gradient descent (CGD) for several one-sided and two-sided models defined in HV 2021. Additionally, we define for the first time a Nash-bargaining-based model for non-bipartite matching markets and solve it using CGD. Furthermore, in every case, we study not only the Fisher but also the Arrow-Debreu version; the latter is also called the exchange version. We give natural applications for each model studied. These models inherit the game-theoretic and computational properties of Nash bargaining. We also establish a deep connection between HZ and the Nash-bargaining-based models, thereby confirming that the alternative to HZ proposed in HV 2021 is a principled one.
We introduce a combinatorial variant of the cost sharing problem: several services can be provided to each player and each player values every combination of services differently. A publicly known cost function specifies the cost of providing every possible combination of services. A combinatorial cost sharing mechanism is a protocol that decides which services each player gets and at what price. We look for dominant strategy mechanisms that are (economically) efficient and cover the cost, ideally without overcharging (i.e., budget balanced). Note that unlike the standard cost sharing setting, combinatorial cost sharing is a multi-parameter domain. This makes designing dominant strategy mechanisms with good guarantees a challenging task. We present the Potential Mechanism -- a combination of the VCG mechanism and a well-known tool from the theory of cooperative games: Hart and Mas-Colells potential function. The potential mechanism is a dominant strategy mechanism that always covers the incurred cost. When the cost function is subadditive the same mechanism is also approximately efficient. Our main technical contribution shows that when the cost function is submodular the potential mechanism is approximately budget balanced in three settings: supermodular valuations, symmetric cost function and general symmetric valuations, and two players with general valuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا