Open $r$-spin theory II: The analogue of Wittens conjecture for $r$-spin disks


Abstract in English

We conclude the construction of $r$-spin theory in genus zero for Riemann surfaces with boundary. In particular, we define open $r$-spin intersection numbers, and we prove that their generating function is closely related to the wave function of the $r$th Gelfand--Dickey integrable hierarchy. This provides an analogue of Wittens $r$-spin conjecture in the open setting and a first step toward the construction of an open version of Fan--Jarvis--Ruan--Witten theory. As an unexpected consequence, we establish a mysterious relationship between open $r$-spin theory and an extension of Wittens closed theory.

Download