Do you want to publish a course? Click here

Comparison of the roughness scaling of the surface topography of Earth and Venus

115   0   0.0 ( 0 )
 Added by Yaneer Bar-Yam
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the scaling behavior of the Earth and Venus over a wider range of length scales than reported by previous researchers. All landscapes (not only mountains) together follow a consistent scaling behavior, demonstrating a crossover between highly correlated (smooth) behavior at short length scales (with a scaling exponent $alpha$=1) and self-affine behavior at long length scales ($alpha$=0.4). The self-affine behavior at long scales is achieved on Earth above 10 km and on Venus above 50 km.



rate research

Read More

162 - T. Mizoue , M. Tokita , H. Honjo 2011
The surface pattern formation on a gelation surface is analyzed using an effective surface roughness. The spontaneous surface deformation on DiMethylAcrylAmide (DMAA) gelation surface is controlled by temperature, initiator concentration, and ambient oxygen. The effective surface roughness is defined using 2-dimensional photo data to characterize the surface deformation. Parameter dependence of the effective surface roughness is systematically investigated. We find that decrease of ambient oxygen, increase of initiator concentration, and high temperature tend to suppress the surface deformation in almost similar manner. That trend allows us to collapse all the data to a unified master curve. As a result, we finally obtain an empirical scaling form of the effective surface roughness. This scaling is useful to control the degree of surface patterning. However, the actual dynamics of this pattern formation is not still uncovered.
We consider the main transition in single-component membranes using computer simulations of the Pink model [D. Pink {it et al.}, Biochemistry {bf 19}, 349 (1980)]. We first show that the accepted parameters of the Pink model yield a main transition temperature that is systematically below experimental values. This resolves an issue that was first pointed out by Corvera and co-workers [Phys. Rev. E {bf 47}, 696 (1993)]. In order to yield the correct transition temperature, the strength of the van der Waals coupling in the Pink model must be increased; by using finite-size scaling, a set of optimal values is proposed. We also provide finite-size scaling evidence that the Pink model belongs to the universality class of the two-dimensional Ising model. This finding holds irrespective of the number of conformational states. Finally, we address the main transition in the presence of quenched disorder, which may arise in situations where the membrane is deposited on a rough support. In this case, we observe a stable multi-domain structure of gel and fluid domains, and the absence of a sharp transition in the thermodynamic limit.
62 - Andrea Parisi 2000
We study the fracture surface of three dimensional samples through a model for quasi-static fractures known as Born Model. We find for the roughness exponent a value of 0.5 expected for ``small length scales in microfracturing experiments. Our simulations confirm that at small length scales the fracture can be considered as quasi-static. The isotropy of the roughness exponent on the crack surface is also shown. Finally, considering the crack front, we compute the roughness exponents for longitudinal and transverse fluctuations of the crack line (both 0.5). They result in agreement with experimental data, and supports the possible application of the model of line depinning in the case of long-range interactions.
We show that smoothing of multiaffine surfaces that are generated by simulating a crosslinked polymer gel by a frustrated, triangular network of springs of random equilibrium lengths [G.M. Buend{i}a, S.J. Mitchell, P.A. Rikvold, Phys. Rev. E 66 (2002) 046119] changes the scaling behavior of the surfaces such that they become self-affine. The self-affine behavior is consistent with recent atomic force microscopy (AFM) studies of the surface structure of crosslinked polymer gels into which voids are introduced through templating by surfactant micelles [M. Chakrapani, S.J. Mitchell, D.H. Van Winkle, P.A. Rikvold, J. Colloid Interface Sci., in press]. The smoothing process mimics the effect of the AFM tip that tends to flatten the soft gel surfaces. Both the experimental and the simulated surfaces have a non-trivial scaling behavior on small length scales, with a crossover to scale-independent behavior on large scales.
The statistical properties of avalanches in a dissipative particulate system under slow shear are investigated using molecular dynamics simulations. It is found that the magnitude-frequency distribution obeys the Gutenberg-Richter law only in the proximity of a critical density and that the exponent is sensitive to the minute changes in density. It is also found that aftershocks occur in this system with a decay rate that follows the Modified Omori law. We show that the exponent of the magnitude-frequency distribution and the time constant of the Modified Omori law are decreasing functions of the shear stress. The dependences of these two parameters on shear stress coincide with recent seismological observations [D. Schorlemmer et al. Nature 437, 539 (2005); C. Narteau et al. Nature 462, 642 (2009)].
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا