Do you want to publish a course? Click here

Series-connected array of superconductor-insulator-superconductor junctions in the 100-GHz band heterodyne mixer for FOREST on the Nobeyama 45-m telescope

93   0   0.0 ( 0 )
 Added by Taku Nakajima
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study, we designed and experimentally evaluated a series-connected array of superconductor-insulator-superconductor (SIS) junctions in the 100-GHz band mixer for the multi-beam receiver FOREST on the Nobeyama 45-m millimeter-wave telescope. The construction of the junction chip comprised a waveguide probe antenna, impedance matching circuit, SIS array junction, and choke filter, which were made from a superconducting niobium planar circuit on a quartz substrate. The multi-stage impedance matching circuit between the feed point and the SIS junction was designed as a capacitively loaded transmission line, and it comprised two sections with high (~90 Ohm) and low (~10 Ohm) characteristic impedance transmission lines. The structure of this tuning line was simple and easy to fabricate, and the feed impedance matched with the SIS junction in a wide frequency range. The signal coupling efficiency was more than 92% and the expected receiver noise temperature was approximately two times the quantum limit for 75-125 GHz based on quantum theory. The array junction devices with 3-6 connected junctions were fabricated and we measured their performance in terms of the receiver noise temperature and gain compression in the laboratory. We successfully developed an array junction device with a receiver noise temperature of ~15-30 K and confirmed that the improvement in the saturation power corresponded to the number of junctions. The newly developed array junction mixer was installed in the FOREST receiver and it successfully detected the 12CO (J = 1-0) molecular line toward IRC+10216 with the Nobeyama 45-m telescope.



rate research

Read More

We present a conceptual framework of planar SIS mixer array receivers and the studies on the required techniques. This concept features membrane-based on-chip waveguide probes and a quasi-two-dimensional local-oscillator distribution waveguide network. This concept allows sophisticated functions, such as dual-polarization, balanced mixing and sideband separation, easily implemented with the SIS mixer array in the same planar circuit. We have developed a single-pixel prototype receiver by implementing the concept in the design. Initial measurement results show good evidences that support the feasibility of the concept.
We have developed a two-beam waveguide-type dual-polarization sideband-separating SIS receiver system in the 100-GHz band for {it z}-machine on the 45-m radio telescope at the Nobeyama Radio Observatory. The receiver is intended for astronomical use in searching for highly redshifted spectral lines from galaxies of unknown redshift. This receiver has two beams, which have 45$^{primeprime}$ of beam separation and allow for observation with the switch in the on-on position. The receiver of each beam is composed of an ortho-mode transducer and two sideband-separating SIS mixers, which are both based on a waveguide technique, and the receiver has four intermediate frequency bands of 4.0--8.0 GHz. Over the radio frequency range of 80--116 GHz, the single-sideband receiver noise temperature is lower than about 50 K, and the image rejection ratios are greater than 10 dB in most of the same frequency range. The new receiver system has been installed in the telescope, and we successfully observed a $^{12}$CO ({it J}=3--2) emission line toward a cloverleaf quasar at {it z} = 2.56, which validates the performance of the receiver system. The SSB noise temperature of the system, including the atmosphere, is typically 150--300 K at a radio frequency of 97 GHz. We have begun blind search of high-{it J} CO toward high-{it z} submillimeter galaxies.
As deformations of the main reflector of a radio telescope directly affect the observations, the evaluation of the deformation is extremely important. Dynamic characteristics of the main reflector of the Nobeyama 45 m radio telescope, Japan, are measured under two conditions: The first is when the pointing observation is in operation, and the second is when the reflector is stationary and is subjected to wind loads when the observation is out of operation. Dynamic characteristics of the main reflector are measured using piezoelectric accelerometers. When the telescope is in operation, a vibration mode with one nodal line horizontally or vertically on the reflector is induced, depending on whether the reflector is moving in the azimuthal or elevational planes, whereas under windy conditions, vibration modes that have two to four nodal lines are simultaneously induced. The predominant mode is dependent on the direction of wind loads.
The FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45-m telescope (FUGIN) project is one of the legacy projects using the new multi-beam FOREST receiver installed on the Nobeyama 45-m telescope. This project aims to investigate the distribution, kinematics, and physical properties of both diffuse and dense molecular gas in the Galaxy at once by observing 12CO, 13CO, and C18O J=1-0 lines simultaneously. The mapping regions are a part of the 1st quadrant (10d < l < 50d, |b| < 1d) and the 3rd quadrant (198d < l <236d, |b| < 1d) of the Galaxy, where spiral arms, bar structure, and the molecular gas ring are included. This survey achieves the highest angular resolution to date (~20) for the Galactic plane survey in the CO J=1-0 lines, which makes it possible to find dense clumps located farther away than the previous surveys. FUGIN will provide us with an invaluable dataset for investigating the physics of the galactic interstellar medium (ISM), particularly the evolution of interstellar gas covering galactic scale structures to the internal structures of giant molecular clouds, such as small filament/clump/core. We present an overview of the FUGIN project, observation plan, and initial results, which reveal wide-field and detailed structures of molecular clouds, such as entangled filaments that have not been obvious in previous surveys, and large-scale kinematics of molecular gas such as spiral arms.
The brightness temperature of the radio free-free emission at millimeter range is an effective tool for characterizing the vertical structure of the solar chromosphere. In this paper, we report on the first single-dish observation of a sunspot at 85 and 115 GHz with sufficient spatial resolution for resolving the sunspot umbra using the Nobeyama 45 m telescope. We used radio attenuation material, i.e. a solar filter, to prevent the saturation of the receivers. Considering the contamination from the plage by the side-lobes, we found that the brightness temperature of the umbra should be lower than that of the quiet region. This result is inconsistent with the preexisting atmospheric models. We also found that the brightness temperature distribution at millimeter range strongly corresponds to the ultraviolet (UV) continuum emission at 1700 {AA}, especially at the quiet region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا