Do you want to publish a course? Click here

Surface Light Field Fusion

115   0   0.0 ( 0 )
 Added by Jeong JOon Park
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present an approach for interactively scanning highly reflective objects with a commodity RGBD sensor. In addition to shape, our approach models the surface light field, encoding scene appearance from all directions. By factoring the surface light field into view-independent and wavelength-independent components, we arrive at a representation that can be robustly estimated with IR-equipped commodity depth sensors, and achieves high quality results.



rate research

Read More

We present a practical and robust deep learning solution for capturing and rendering novel views of complex real world scenes for virtual exploration. Previous approaches either require intractably dense view sampling or provide little to no guidance for how users should sample views of a scene to reliably render high-quality novel views. Instead, we propose an algorithm for view synthesis from an irregular grid of sampled views that first expands each sampled view into a local light field via a multiplane image (MPI) scene representation, then renders novel views by blending adjacent local light fields. We extend traditional plenoptic sampling theory to derive a bound that specifies precisely how densely users should sample views of a given scene when using our algorithm. In practice, we apply this bound to capture and render views of real world scenes that achieve the perceptual quality of Nyquist rate view sampling while using up to 4000x fewer views. We demonstrate our approachs practicality with an augmented reality smartphone app that guides users to capture input images of a scene and viewers that enable realtime virtual exploration on desktop and mobile platforms.
Multiple color stripes have been employed for structured light-based rapid range imaging to increase the number of uniquely identifiable stripes. The use of multiple color stripes poses two problems: (1) object surface color may disturb the stripe color and (2) the number of adjacent stripes required for identifying a stripe may not be maintained near surface discontinuities such as occluding boundaries. In this paper, we present methods to alleviate those problems. Log-gradient filters are employed to reduce the influence of object colors, and color stripes in two and three directions are used to increase the chance of identifying correct stripes near surface discontinuities. Experimental results demonstrate the effectiveness of our methods.
Human portraits exhibit various appearances when observed from different views under different lighting conditions. We can easily imagine how the face will look like in another setup, but computer algorithms still fail on this problem given limited observations. To this end, we present a system for portrait view synthesis and relighting: given multiple portraits, we use a neural network to predict the light-transport field in 3D space, and from the predicted Neural Light-transport Field (NeLF) produce a portrait from a new camera view under a new environmental lighting. Our system is trained on a large number of synthetic models, and can generalize to different synthetic and real portraits under various lighting conditions. Our method achieves simultaneous view synthesis and relighting given multi-view portraits as the input, and achieves state-of-the-art results.
Previous online 3D dense reconstruction methods struggle to achieve the balance between memory storage and surface quality, largely due to the usage of stagnant underlying geometry representation, such as TSDF (truncated signed distance functions) or surfels, without any knowledge of the scene priors. In this paper, we present DI-Fusion (Deep Implicit Fusion), based on a novel 3D representation, i.e. Probabilistic Local Implicit Voxels (PLIVoxs), for online 3D reconstruction with a commodity RGB-D camera. Our PLIVox encodes scene priors considering both the local geometry and uncertainty parameterized by a deep neural network. With such deep priors, we are able to perform online implicit 3D reconstruction achieving state-of-the-art camera trajectory estimation accuracy and mapping quality, while achieving better storage efficiency compared with previous online 3D reconstruction approaches. Our implementation is available at https://www.github.com/huangjh-pub/di-fusion.
The reconstruction of a discrete surface from a point cloud is a fundamental geometry processing problem that has been studied for decades, with many methods developed. We propose the use of a deep neural network as a geometric prior for surface reconstruction. Specifically, we overfit a neural network representing a local chart parameterization to part of an input point cloud using the Wasserstein distance as a measure of approximation. By jointly fitting many such networks to overlapping parts of the point cloud, while enforcing a consistency condition, we compute a manifold atlas. By sampling this atlas, we can produce a dense reconstruction of the surface approximating the input cloud. The entire procedure does not require any training data or explicit regularization, yet, we show that it is able to perform remarkably well: not introducing typical overfitting artifacts, and approximating sharp features closely at the same time. We experimentally show that this geometric prior produces good results for both man-made objects containing sharp features and smoother organic objects, as well as noisy inputs. We compare our method with a number of well-known reconstruction methods on a standard surface reconstruction benchmark.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا