Do you want to publish a course? Click here

Reconstruction and Registration of Large-Scale Medical Scene Using Point Clouds Data from Different Modalities

61   0   0.0 ( 0 )
 Added by Ke Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Sensing the medical scenario can ensure the safety during the surgical operations. So, in this regard, a monitor platform which can obtain the accurate location information of the surgery room is desperately needed. Compared to 2D camera image, 3D data contains more information of distance and direction. Therefore, 3D sensors are more suitable to be used in surgical scene monitoring. However, each 3D sensor has its own limitations. For example, Lidar (Light Detection and Ranging) can detect large-scale environment with high precision, but the point clouds or depth maps are very sparse. As for commodity RGBD sensors, such as Kinect, can accurately capture denser data, but limited to a small range from 0.5 to 4.5m. So, a proper method which can address these problems for fusing different modalities data is important. In this paper, we proposed a method which can fuse different modalities 3D data to get a large-scale and dense point cloud. The key contributions of our work are as follows. First, we proposed a 3D data collecting system to reconstruct the medical scenes. By fusing the Lidar and Kinect data, a large-scale medical scene with more details can be reconstructed. Second, we proposed a location-based fast point clouds registration algorithm to deal with different modality datasets.



rate research

Read More

Film media is a rich form of artistic expression. Unlike photography, and short videos, movies contain a storyline that is deliberately complex and intricate in order to engage its audience. In this paper we present a large scale study comparing the effectiveness of visual, audio, text, and metadata-based features for predicting high-level information about movies such as their genre or estimated budget. We demonstrate the usefulness of content-based methods in this domain in contrast to human-based and metadata-based predictions in the era of deep learning. Additionally, we provide a comprehensive study of temporal feature aggregation methods for representing video and text and find that simple pooling operations are effective in this domain. We also show to what extent different modalities are complementary to each other. To this end, we also introduce Moviescope, a new large-scale dataset of 5,000 movies with corresponding movie trailers (video + audio), movie posters (images), movie plots (text), and metadata.
105 - Lingjing Wang , Yu Hao , Xiang Li 2020
Deep learning-based point cloud registration models are often generalized from extensive training over a large volume of data to learn the ability to predict the desired geometric transformation to register 3D point clouds. In this paper, we propose a meta-learning based 3D registration model, named 3D Meta-Registration, that is capable of rapidly adapting and well generalizing to new 3D registration tasks for unseen 3D point clouds. Our 3D Meta-Registration gains a competitive advantage by training over a variety of 3D registration tasks, which leads to an optimized model for the best performance on the distribution of registration tasks including potentially unseen tasks. Specifically, the proposed 3D Meta-Registration model consists of two modules: 3D registration learner and 3D registration meta-learner. During the training, the 3D registration learner is trained to complete a specific registration task aiming to determine the desired geometric transformation that aligns the source point cloud with the target one. In the meantime, the 3D registration meta-learner is trained to provide the optimal parameters to update the 3D registration learner based on the learned task distribution. After training, the 3D registration meta-learner, which is learned with the optimized coverage of distribution of 3D registration tasks, is able to dynamically update 3D registration learners with desired parameters to rapidly adapt to new registration tasks. We tested our model on synthesized dataset ModelNet and FlyingThings3D, as well as real-world dataset KITTI. Experimental results demonstrate that 3D Meta-Registration achieves superior performance over other previous techniques (e.g. FlowNet3D).
Scene flow is the three-dimensional (3D) motion field of a scene. It provides information about the spatial arrangement and rate of change of objects in dynamic environments. Current learning-based approaches seek to estimate the scene flow directly from point clouds and have achieved state-of-the-art performance. However, supervised learning methods are inherently domain specific and require a large amount of labeled data. Annotation of scene flow on real-world point clouds is expensive and challenging, and the lack of such datasets has recently sparked interest in self-supervised learning methods. How to accurately and robustly learn scene flow representations without labeled real-world data is still an open problem. Here we present a simple and interpretable objective function to recover the scene flow from point clouds. We use the graph Laplacian of a point cloud to regularize the scene flow to be as-rigid-as-possible. Our proposed objective function can be used with or without learning---as a self-supervisory signal to learn scene flow representations, or as a non-learning-based method in which the scene flow is optimized during runtime. Our approach outperforms related works in many datasets. We also show the immediate applications of our proposed method for two applications: motion segmentation and point cloud densification.
86 - Yue Pan 2019
Point cloud registration has been one of the basic steps of point cloud processing, which has a lot of applications in remote sensing and robotics. In this report, we summarized the basic workflow of target-less point cloud registration,namely correspondence determination and transformation estimation. Then we reviewed three commonly used groups of registration approaches, namely the feature matching based methods, the iterative closest points algorithm and the randomly hypothesis and verify based methods. Besides, we analyzed the advantage and disadvantage of these methods are introduced their common application scenarios. At last, we discussed the challenges of current point cloud registration methods and proposed several open questions for the future development of automatic registration approaches.
We introduce PC2WF, the first end-to-end trainable deep network architecture to convert a 3D point cloud into a wireframe model. The network takes as input an unordered set of 3D points sampled from the surface of some object, and outputs a wireframe of that object, i.e., a sparse set of corner points linked by line segments. Recovering the wireframe is a challenging task, where the numbers of both vertices and edges are different for every instance, and a-priori unknown. Our architecture gradually builds up the model: It starts by encoding the points into feature vectors. Based on those features, it identifies a pool of candidate vertices, then prunes those candidates to a final set of corner vertices and refines their locations. Next, the corners are linked with an exhaustive set of candidate edges, which is again pruned to obtain the final wireframe. All steps are trainable, and errors can be backpropagated through the entire sequence. We validate the proposed model on a publicly available synthetic dataset, for which the ground truth wireframes are accessible, as well as on a new real-world dataset. Our model produces wireframe abstractions of good quality and outperforms several baselines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا