No Arabic abstract
Automatic Differentiation (AD) allows to determine exactly the Taylor series of any function truncated at any order. Here we propose to use AD techniques for Monte Carlo data analysis. We discuss how to estimate errors of a general function of measured observables in different Monte Carlo simulations. Our proposal combines the $Gamma$-method with Automatic differentiation, allowing exact error propagation in arbitrary observables, even those defined via iterative algorithms. The case of special interest where we estimate the error in fit parameters is discussed in detail. We also present a freely available fortran reference implementation of the ideas discussed in this work.
We present ADerrors.jl, a software for linear error propagation and analysis of Monte Carlo data. Although the focus is in data analysis in Lattice QCD, where estimates of the observables have to be computed from Monte Carlo samples, the software also deals with variables with uncertainties, either correlated or uncorrelated. Thanks to automatic differentiation techniques linear error propagation is performed exactly, even in iterative algorithms (i.e. errors in parameters of non-linear fits). In this contribution we present an overview of the capabilities of the software, including access to uncertainties in fit parameters and dealing with correlated data. The software, written in julia, is available for download and use in https://gitlab.ift.uam-csic.es/alberto/aderrors.jl
Ultracold neutrons (UCN) with kinetic energies up to 300 neV can be stored in material or magnetic confinements for hundreds of seconds. This makes them a very useful tool for probing fundamental symmetries of nature, by searching for charge-parity violation by a neutron electric dipole moment, and yielding important parameters for Big Bang nucleosynthesis, e.g. in neutron-lifetime measurements. Further increasing the intensity of UCN sources is crucial for next-generation experiments. Advanced Monte Carlo (MC) simulation codes are important in optimization of neutron optics of UCN sources and of experiments, but also in estimation of systematic effects, and in bench-marking of analysis codes. Here we will give a short overview of recent MC simulation activities in this field.
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account for the error improvement advertised by the Quasi-Monte Carlo method. We advocate the construction of an estimator of stochastic nature, based on the ensemble of pointsets with a particular discrepancy value. We investigate the consequences of this choice and give some first empirical results on the suggested estimators.
Different methods for extracting resonance parameters from Euclidean lattice field theory are tested. Monte Carlo simulations of the O(4) non-linear sigma model are used to generate energy spectra in a range of different volumes both below and above the inelastic threshold. The applicability of the analysis methods in the elastic region is compared. Problems which arise in the inelastic region are also emphasised.
Tensor renormalization group (TRG) constitutes an important methodology for accurate simulations of strongly correlated lattice models. Facilitated by the automatic differentiation technique widely used in deep learning, we propose a uniform framework of differentiable TRG ($partial$TRG) that can be applied to improve various TRG methods, in an automatic fashion. Essentially, $partial$TRG systematically extends the concept of second renormalization [PRL 103, 160601 (2009)] where the tensor environment is computed recursively in the backward iteration, in the sense that given the forward process of TRG, $partial$TRG automatically finds the gradient through backpropagation, with which one can deeply train the tensor networks. We benchmark $partial$TRG in solving the square-lattice Ising model, and demonstrate its power by simulating one- and two-dimensional quantum systems at finite temperature. The deep optimization as well as GPU acceleration renders $partial$TRG manybody simulations with high efficiency and accuracy.