No Arabic abstract
We propose a new primal-dual homotopy smoothing algorithm for a linearly constrained convex program, where neither the primal nor the dual function has to be smooth or strongly convex. The best known iteration complexity solving such a non-smooth problem is $mathcal{O}(varepsilon^{-1})$. In this paper, we show that by leveraging a local error bound condition on the dual function, the proposed algorithm can achieve a better primal convergence time of $mathcal{O}left(varepsilon^{-2/(2+beta)}log_2(varepsilon^{-1})right)$, where $betain(0,1]$ is a local error bound parameter. As an example application of the general algorithm, we show that the distributed geometric median problem, which can be formulated as a constrained convex program, has its dual function non-smooth but satisfying the aforementioned local error bound condition with $beta=1/2$, therefore enjoying a convergence time of $mathcal{O}left(varepsilon^{-4/5}log_2(varepsilon^{-1})right)$. This result improves upon the $mathcal{O}(varepsilon^{-1})$ convergence time bound achieved by existing distributed optimization algorithms. Simulation experiments also demonstrate the performance of our proposed algorithm.
We study constrained stochastic programs where the decision vector at each time slot cannot be chosen freely but is tied to the realization of an underlying random state vector. The goal is to minimize a general objective function subject to linear constraints. A typical scenario where such programs appear is opportunistic scheduling over a network of time-varying channels, where the random state vector is the channel state observed, and the control vector is the transmission decision which depends on the current channel state. We consider a primal-dual type Frank-Wolfe algorithm that has a low complexity update during each slot and that learns to make efficient decisions without prior knowledge of the probability distribution of the random state vector. We establish convergence time guarantees for the case of both convex and non-convex objective functions. We also emphasize application of the algorithm to non-convex opportunistic scheduling and distributed non-convex stochastic optimization over a connected graph.
In this paper we propose a primal-dual homotopy method for $ell_1$-minimization problems with infinity norm constraints in the context of sparse reconstruction. The natural homotopy parameter is the value of the bound for the constraints and we show that there exists a piecewise linear solution path with finitely many break points for the primal problem and a respective piecewise constant path for the dual problem. We show that by solving a small linear program, one can jump to the next primal break point and then, solving another small linear program, a new optimal dual solution is calculated which enables the next such jump in the subsequent iteration. Using a theorem of the alternative, we show that the method never gets stuck and indeed calculates the whole path in a finite number of steps. Numerical experiments demonstrate the effectiveness of our algorithm. In many cases, our method significantly outperforms commercial LP solvers; this is possible since our approach employs a sequence of considerably simpler auxiliary linear programs that can be solved efficiently with specialized active-set strategies.
Stochastic gradient methods (SGMs) have been widely used for solving stochastic optimization problems. A majority of existing works assume no constraints or easy-to-project constraints. In this paper, we consider convex stochastic optimization problems with expectation constraints. For these problems, it is often extremely expensive to perform projection onto the feasible set. Several SGMs in the literature can be applied to solve the expectation-constrained stochastic problems. We propose a novel primal-dual type SGM based on the Lagrangian function. Different from existing methods, our method incorporates an adaptiveness technique to speed up convergence. At each iteration, our method inquires an unbiased stochastic subgradient of the Lagrangian function, and then it renews the primal variables by an adaptive-SGM update and the dual variables by a vanilla-SGM update. We show that the proposed method has a convergence rate of $O(1/sqrt{k})$ in terms of the objective error and the constraint violation. Although the convergence rate is the same as those of existing SGMs, we observe its significantly faster convergence than an existing non-adaptive primal-dual SGM and a primal SGM on solving the Neyman-Pearson classification and quadratically constrained quadratic programs. Furthermore, we modify the proposed method to solve convex-concave stochastic minimax problems, for which we perform adaptive-SGM updates to both primal and dual variables. A convergence rate of $O(1/sqrt{k})$ is also established to the modified method for solving minimax problems in terms of primal-dual gap.
In this work, we introduce ADAPD, $textbf{A}$ $textbf{D}$ecentr$textbf{A}$lized $textbf{P}$rimal-$textbf{D}$ual algorithmic framework for solving non-convex and smooth consensus optimization problems over a network of distributed agents. ADAPD makes use of an inexact ADMM-type update. During each iteration, each agent first inexactly solves a local strongly convex subproblem and then performs a neighbor communication while updating a set of dual variables. Two variations to ADAPD are presented. The variants allow agents to balance the communication and computation workload while they collaboratively solve the consensus optimization problem. The optimal convergence rate for non-convex and smooth consensus optimization problems is established; namely, ADAPD achieves $varepsilon$-stationarity in $mathcal{O}(varepsilon^{-1})$ iterations. Numerical experiments demonstrate the superiority of ADAPD over several existing decentralized methods.
This paper studies the distributed optimization problem where the objective functions might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient methods, we focus on the case when the exact subgradients of the local objective functions can not be accessed by the agents. To solve this problem, we propose a projected primal-dual dynamics using only the objective functions approximate subgradients. We first prove that the formulated optimization problem can only be solved with an approximate error depending upon the accuracy of the available subgradients. Then, we show the exact solvability of this optimization problem if the accumulated approximation error is not too large. After that, we also give a novel componentwise normalized variant to improve the transient behavior of the convergent sequence. The effectiveness of our algorithms is verified by a numerical example.