Do you want to publish a course? Click here

Parity-violating gravity and GW170817

144   0   0.0 ( 0 )
 Added by Atsushi Nishizawa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider gravitational waves (GWs) in generic parity-violating gravity including recently proposed ghost-free theories with parity violation as well as Chern-Simons (CS) modified gravity, and study the implications of observational constraints from GW170817/GRB 170817A. Whereas GWs propagate at the speed of light, c, in CS gravity, we point out that this is specific to CS gravity and the GW propagation speed deviates from c, in general, in parity-violating gravity. Therefore, contrary to the previous literature in which only CS gravity is studied as a concrete example, we show that GW170817/GRB 170817A can, in fact, be used to limit gravitational parity violation. Our argument implies that the constraint on the propagation speed of GWs can pin down the parity-violating sector, if any, to CS gravity.



rate research

Read More

Parity-violating (PV) gravity has recently attracted interest in several aspects. One of them is the axion-graviton coupling to test the axion-dark matter model. Moreover, by extending Chern-Simons (CS) gravity to include derivatives of a scalar field up to the second order, a more general class of PV gravity theory, which we call the CNCL model, has been proposed~[M. Crisostomi {it et al.}, Phys. Rev. D, {bf 97}, 044034 (2018)]. The model can be further extended by including even higher derivatives of the scalar field and/or higher curvature terms. In this paper, we discuss the effect of parity violation in the gravitational sector on the propagation of gravitational waves from binary coalescence by introducing a model-independent parametrization of modification. Our parametrization includes the CNCL model as well as CS gravity. The effect of parity violation on the gravitational waveform is maximum when the source binary orientation to our line of sight is edge-on, while the modified waveform reduces to the parity-symmetric one when the source is face-on. We perform a search for the signature of such modification by using the LIGO/Virgo O1/O2 catalog. We find that the catalog data is consistent with general relativity and obtain constraints on parity violation in gravity for various post-Newtonian order modifications for the first time. The obtained constraint on CS gravity is consistent with the results in previous works. On the other hand, the constraint on the CNCL model that we obtain is tighter than the previous results by roughly 7 orders of magnitude.
The combined observation of GW170817 and its electromagnetic counterpart GRB170817A reveals that gravitational waves propagate at the speed of light in high precision. We apply the effective field theory approach to investigate the experimental consequences for the theory of $f(T)$ gravity. We find that the speed of gravitational waves within $f(T)$ gravity is exactly equal to the light speed, and hence the constraints from GW170817 and GRB170817A are trivially satisfied. The results are verified through the standard analysis of cosmological perturbations. Nevertheless, by examining the dispersion relation and the frequency of cosmological gravitational waves, we observe a deviation from the results of General Relativity, quantified by a new parameter. Although its value is relatively small in viable $f(T)$ models, its possible future measurement in advancing gravitational-wave astronomy would be the smoking gun of testing this type of modified gravity.
A theory concerning non-zero macroscopic chirality-dependent force between a source mass and homochiral molecules due to the exchange of light particles is presented in this paper. This force is proposed to have opposite sign for molecules with opposite chirality. Using the central field approximation, we calculate this force between a copper block and a vessel of chiral molecules (methyl phenyl carbinol nitrite). The magnitude of force is estimated with the published limits of the scalar and pseudo-scalar coupling constants. Based on our theoretical model, this force may violate the equivalence principle when the homochiral molecules are used to be the test masses.
In this Letter we constrain for the first time both cosmology and modified gravity theories conjointly, by combining the GW and electromagnetic observations of GW170817. We provide joint posterior distributions for the Hubble constant $H_0$, and two physical effects typical of modified gravity: the gravitational wave (GW) friction, encoded by the parameter $alpha_M$, and several GW dispersion relations. Among the results of this analysis, we can improve by 15% the bound of the graviton mass with respect to measurement using the same event, but fixing $H_0$. We obtain a value of $m^2_g=2.08_{-4.25}^{+13.90} cdot 10^{-44} rm{eV^2/c^4}$ at 99.7% confidence level (CL), when marginalising over the Hubble constant and GW friction term $alpha_M$. We find poor constraints on $alpha_M$, but demonstrate that for all the GW dispersions relations considered, including massive gravity, the GW must be emitted $sim$ 1.74s before the Gamma-ray burst (GRB). Furthermore, at the GW merger peak frequency, we show that the fractional difference between the GW group velocity and $c$ is $lesssim 10^{-17}$.
84 - Enrico Barausse 2019
Hov{r}ava gravity breaks boost invariance in the gravitational sector by introducing a preferred time foliation. The dynamics of this preferred slicing is governed, in the low-energy limit suitable for most astrophysical applications, by three dimensionless parameters $alpha$, $beta$ and $lambda$. The first two of these parameters are tightly bound by solar system and gravitational wave propagation experiments, but $lambda$ remains relatively unconstrained ($0leqlambdalesssim 0.01-0.1$). We restrict here to the parameter space region defined by $alpha=beta=0$ (with $lambda$ kept generic), which in a previous paper we showed to be the only one where black hole solutions are non-pathological at the universal horizon, and we focus on possible violations of the strong equivalence principle in systems involving neutron stars. We compute neutron star sensitivities, which parametrize violations of the strong equivalence principle at the leading post-Newtonian order, and find that they vanish identically, like in the black hole case, for $alpha=beta=0$ and generic $lambda eq0$. This implies that no violations of the strong equivalence principle (neither in the conservative sector nor in gravitational wave fluxes) can occur at the leading post-Newtonian order in binaries of compact objects, and that data from binary pulsars and gravitational interferometers are unlikely to further constrain $lambda$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا