Do you want to publish a course? Click here

Finding and breaking the realistic rate-distance limit of continuous variable quantum key distribution

42   0   0.0 ( 0 )
 Added by Xuyang Wang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, the rate-distance limit of continuous variable quantum key distribution is studied. We find that the excess noise generated on Bobs side and the method for calculating the excess noise restrict the rate-distance limit. Then, a realistic rate-distance limit is found. To break the realistic limit, a method for calculating the secret key rate using pure excess noise is proposed. The improvement in the rate-distance limit due to a higher reconciliation efficiency is analyzed. It is found that this improvement is dependent on the excess noise. From a finite-size analysis, the monotonicity of the Holevo bound versus the transmission efficiency is studied, and a tighter rate-distance limit is presented.



rate research

Read More

Device-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure key even if the users devices are untrusted. Currently, all DIQKD protocols suffer from the secret key capacity bound, i.e., the secret key rate scales linearly with the transmittance of two users. Here we propose a heralded DIQKD scheme based on entangled coherent states to improve entangling rates whereby long-distance entanglement is created by single-photon-type interference. The secret key rate of our scheme can significantly outperform the traditional two-photon-type Bell-state measurement scheme and, importantly, surpass the above capacity bound. Our protocol therefore is an important step towards a realization of DIQKD and can be a promising candidate scheme for entanglement swapping in future quantum internet.
Continuous-variable quantum key distribution (CV-QKD) with discrete modulation has received widespread attentions because of its experimental simplicity, lower-cost implementation and ease to multiplex with classical optical communication. Recently, some inspiring numerical methods have been applied to analyse the security of discrete-modulated CV-QKD against collective attacks, which promises to obtain considerable key rate over one hundred kilometers of fiber distance. However, numerical methods require up to ten minutes to calculate a secure key rate one time using a high-performance personal computer, which means that extracting the real-time secure key rate is impossible for discrete-modulated CV-QKD system. Here, we present a neural network model to quickly predict the secure key rate of homodyne detection discrete-modulated CV-QKD with good accuracy based on experimental parameters and experimental results. With the excess noise of about $0.01$, the speed of our method is improved by about seven orders of magnitude compared to that of the conventional numerical method. Our method can be extended to quickly solve complex security key rate calculation of a variety of other unstructured quantum key distribution protocols.
Quantum key distribution provides secure keys resistant to code-breaking quantum computers. The continuous-variable version of quantum key distribution offers the advantages of higher secret key rates in metropolitan areas, as well as the use of standard telecom components that can operate at room temperature. However, the transmission distance of these systems (compared with discrete-variable systems) are currently limited and considered unsuitable for long-distance distribution. Herein, we report the experimental results of long distance continuous-variable quantum key distribution over 202.81 km of ultralow-loss optical fiber by suitably controlling the excess noise and employing highly efficient reconciliation procedures. This record-breaking implementation of the continuous-variable quantum key distribution doubles the previous distance record and shows the road for long-distance and large-scale secure quantum key distribution using room-temperature standard telecom components.
We introduce a robust scheme for long-distance continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) in which we employ post-selection between distant parties communicating through the medium of an untrusted relay. We perform a security analysis that allows for general transmissivity and thermal noise variance of each link, in which we assume an eavesdropper performs a collective attack and controls the excess thermal noise in the channels. The introduction of post-selection enables the parties to sustain a secret key rate over distances exceeding those of existing CV MDI protocols. In the worst-case scenario in which the relay is positioned equidistant between them, we find that the parties may communicate securely over a range of 14 km in standard optical fiber. Our protocol helps to overcome the rate-distance limitations of previously proposed CV MDI protocols while maintaining many of their advantages.
With the help of quantum key distribution (QKD), two distant peers are able to share information-theoretically secure key bits. Increasing key rate is ultimately significant for the applications of QKD in lossy channel. However, it has proved that there is a fundamental rate-distance limit, named linear bound, which limits the performance of all existing repeaterless protocols and realizations. Surprisingly, a recently proposed protocol, called twin-field (TF) QKD can beat linear bound with no need of quantum repeaters. Here, we present the first implementation of TF-QKD protocol and demonstrate its advantage of beating linear bound at the channel distance of 300 km. In our experiment, a modified TF-QKD protocol which does not assume phase post-selection is considered, and thus higher key rate than the original one is expected. After well controlling the phase evolution of the twin fields travelling hundreds of kilometers of optical fibres, the implemented system achieves high-visibility single-photon interference, and allows stable and high-rate measurement-device-independent QKD. Our experimental demonstration and results confirm the feasibility of the TF-QKD protocol and its prominent superiority in long distance key distribution services.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا