Do you want to publish a course? Click here

A3Net: Adversarial-and-Attention Network for Machine Reading Comprehension

256   0   0.0 ( 0 )
 Added by Jiuniu Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce Adversarial-and-attention Network (A3Net) for Machine Reading Comprehension. This model extends existing approaches from two perspectives. First, adversarial training is applied to several target variables within the model, rather than only to the inputs or embeddings. We control the norm of adversarial perturbations according to the norm of original target variables, so that we can jointly add perturbations to several target variables during training. As an effective regularization method, adversarial training improves robustness and generalization of our model. Second, we propose a multi-layer attention network utilizing three kinds of high-efficiency attention mechanisms. Multi-layer attention conducts interaction between question and passage within each layer, which contributes to reasonable representation and understanding of the model. Combining these two contributions, we enhance the diversity of dataset and the information extracting ability of the model at the same time. Meanwhile, we construct A3Net for the WebQA dataset. Results show that our model outperforms the state-of-the-art models (improving Fuzzy Score from 73.50% to 77.0%).



rate research

Read More

Multi-hop machine reading comprehension is a challenging task in natural language processing, which requires more reasoning ability and explainability. Spectral models based on graph convolutional networks grant the inferring abilities and lead to competitive results, however, part of them still face the challenge of analyzing the reasoning in a human-understandable way. Inspired by the concept of the Grandmother Cells in cognitive neuroscience, a spatial graph attention framework named crname, imitating the procedure was proposed. This model is designed to assemble the semantic features in multi-angle representations and automatically concentrate or alleviate the information for reasoning. The name crname is a metaphor for the pattern of the model: regard the subjects of queries as the start points of clues, take the reasoning entities as bridge points, and consider the latent candidate entities as the grandmother cells, and the clues end up in candidate entities. The proposed model allows us to visualize the reasoning graph and analyze the importance of edges connecting two entities and the selectivity in the mention and candidate nodes, which can be easier to be comprehended empirically. The official evaluations in open-domain multi-hop reading dataset WikiHop and Drug-drug Interactions dataset MedHop prove the validity of our approach and show the probability of the application of the model in the molecular biology domain.
In this paper, we focus on unsupervised domain adaptation for Machine Reading Comprehension (MRC), where the source domain has a large amount of labeled data, while only unlabeled passages are available in the target domain. To this end, we propose an Adversarial Domain Adaptation framework (AdaMRC), where ($i$) pseudo questions are first generated for unlabeled passages in the target domain, and then ($ii$) a domain classifier is incorporated into an MRC model to predict which domain a given passage-question pair comes from. The classifier and the passage-question encoder are jointly trained using adversarial learning to enforce domain-invariant representation learning. Comprehensive evaluations demonstrate that our approach ($i$) is generalizable to different MRC models and datasets, ($ii$) can be combined with pre-trained large-scale language models (such as ELMo and BERT), and ($iii$) can be extended to semi-supervised learning.
Achieving human-level performance on some of Machine Reading Comprehension (MRC) datasets is no longer challenging with the help of powerful Pre-trained Language Models (PLMs). However, the internal mechanism of these artifacts still remains unclear, placing an obstacle for further understanding these models. This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final performance, trying to analyze the potential explainability in PLM-based MRC models. We perform quantitative analyses on SQuAD (English) and CMRC 2018 (Chinese), two span-extraction MRC datasets, on top of BERT, ALBERT, and ELECTRA in various aspects. We discover that {em passage-to-question} and {em passage understanding} attentions are the most important ones, showing strong correlations to the final performance than other parts. Through visualizations and case studies, we also observe several general findings on the attention maps, which could be helpful to understand how these models solve the questions.
Multi-choice Machine Reading Comprehension (MRC) as a challenge requires model to select the most appropriate answer from a set of candidates given passage and question. Most of the existing researches focus on the modeling of the task datasets without explicitly referring to external fine-grained knowledge sources, which is supposed to greatly make up the deficiency of the given passage. Thus we propose a novel reference-based knowledge enhancement model called Reference Knowledgeable Network (RekNet), which refines critical information from the passage and quote explicit knowledge in necessity. In detail, RekNet refines fine-grained critical information and defines it as Reference Span, then quotes explicit knowledge quadruples by the co-occurrence information of Reference Span and candidates. The proposed RekNet is evaluated on three multi-choice MRC benchmarks: RACE, DREAM and Cosmos QA, which shows consistent and remarkable performance improvement with observable statistical significance level over strong baselines.
Adversarial training (AT) as a regularization method has proved its effectiveness on various tasks. Though there are successful applications of AT on some NLP tasks, the distinguishing characteristics of NLP tasks have not been exploited. In this paper, we aim to apply AT on machine reading comprehension (MRC) tasks. Furthermore, we adapt AT for MRC tasks by proposing a novel adversarial training method called PQAT that perturbs the embedding matrix instead of word vectors. To differentiate the roles of passages and questions, PQAT uses additional virtual P/Q-embedding matrices to gather the global perturbations of words from passages and questions separately. We test the method on a wide range of MRC tasks, including span-based extractive RC and multiple-choice RC. The results show that adversarial training is effective universally, and PQAT further improves the performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا