Do you want to publish a course? Click here

Effect of orientation and mode of loading on deformation behaviour of Cu nanowires

91   0   0.0 ( 0 )
 Added by G. Sainath
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular dynamics simulations have been performed to understand the variations in deformation mechanisms of Cu nanowires as a function of orientation and loading mode (tension or compression). Cu nanowires of different crystallographic orientations distributed uniformly on the standard stereographic triangle have been considered under tensile and compressive loading. The simulation results indicate that under compressive loading, the orientations close to $<$100$>$ corner deform by twinning mechanism, while the remaining orientations deform by dislocation slip. On the other hand, all the nanowires deform by twinning mechanism under tensile loading. Further, the orientations close to $<$110$>$ and $<$111$>$ corner exhibit tension-compression asymmetry in deformation mechanisms. In addition to deformation mechanisms, Cu nanowires also display tension-compression asymmetry in yield stress. The orientations close to $<$001$>$ corner exhibits higher yield stress in tension than in compression, while the opposite behaviour (higher yield stress in compression than in tension) has been observed in orientations close to $<$110$>$ and $<$111$>$ corners. For the specific orientation of $<$102$>$, the yield stress asymmetry has not been observed. The tension-compression asymmetry in deformation mechanisms has been explained based on the parameter $alpha_M$, defined as the ratio of Schmid factors for leading and trailing partial dislocations. Similarly, the asymmetry in yield stress values has been attributed to the different Schmid factor values for leading partial dislocations under tensile and compressive loading.



rate research

Read More

123 - G. Sainath , B.K. Choudhary 2016
Molecular dynamics simulations revealed significant difference in deformation behaviour of $<$100$>$ BCC Fe nanowires with and without twist boundary. The plastic deformation in perfect $<$100$>$ BCC Fe nanowire was dominated by twinning and reorientation to $<$110$>$ followed by further deformation by slip mode. On the contrary, $<$100$>$ BCC Fe nanowire with a twist boundary deformed by slip at low plastic strains followed by twinning at high strains and absence of full reorientation. The results suggest that the deformation in $<$100$>$ BCC Fe nanowire by dislocation slip is preferred over twinning in the presence of initial dislocations or dislocation networks. The results also explain the absence of extensive twinning in bulk materials, which inherently contains large number of dislocations.
The role of reduced dimensionality and of the surface on electron-phonon (e-ph) coupling in silicon nanowires is determined from first principles. Surface termination and chemistry is found to have a relatively small influence, whereas reduced dimensionality fundamentally alters the behavior of deformation potentials. As a consequence, electron coupling to breathing modes emerges that cannot be described by conventional treatments of e-ph coupling. The consequences for physical properties such as scattering lengths and mobilities are significant: the mobilities for [110] grown wires are 6 times larger than those for [100] wires, an effect that cannot be predicted without the form we find for Si nanowire deformation potentials.
135 - G. Sainath , B.K. Choudhary 2016
Molecular dynamics simulations performed on <110> Cu nanopillars revealed significant difference in deformation behavior of nanopillars with and without twin boundary. The plastic deformation in single crystal Cu nanopillar without twin boundary was dominated by twinning, whereas the introduction of twin boundary changed the deformation mode from twinning to slip consisting of leading partial followed by trailing partial dislocations. This difference in deformation behavior has been attributed to the formation of stair-rod dislocation and its dissociation in the twinned nanopillars.
Tungsten carbide cobalt hardmetals are commonly used as cutting tools subject to high operation temperature and pressures, where the mechanical performance of the tungsten carbide phase affects the wear and lifetime of the material. In this study, the mechanical behaviour of the isolated tungsten carbide (WC) phase was investigated using single crystal micropillar compression. Micropillars 1-5 ${mu}$m in diameter, in two crystal orientations, were fabricated using focused ion beam (FIB) machining and subsequently compressed between room temperature and 600 {deg}C. The activated plastic deformation mechanisms were strongly anisotropic and weakly temperature dependent. The flow stresses of basal-oriented pillars were about three times higher than the prismatic pillars, and pillars of both orientations soften slightly with increasing temperature. The basal pillars tended to deform by either unstable cracking or unstable yield, whereas the prismatic pillars deformed by slip-mediated cracking. However, the active deformation mechanisms were also sensitive to pillar size and shape. Slip trace analysis of the deformed pillars showed that {10-10} prismatic planes were the dominant slip plane in WC. Basal slip was also identified as a secondary slip system, activated at high temperatures.
128 - Voicu O. Dolocan 2012
The interaction between a spin polarized dc electrical current and spin wave modes of a cylindrical nanowire is investigated in this report. We found that close to the critical current, the uniform mode is suppressed, while the edge mode starts to propagate into the sample. When the current exceeds the critical value, this phenomenon is even more accentuated. The edge mode becomes the uniform mode of the nanowire. The higher spin wave modes are slowly pushed away by the current until the propagating mode remains.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا