No Arabic abstract
Low density regions are less affected by the nonlinear structure formation and baryonic physics. They are ideal places for probing the nature of dark energy, a possible explanation for the cosmic acceleration. Unlike void lensing, which requires identifications of individual voids, we study the stacked lensing signals around the low-density-positions (LDP), defined as places that are devoid of foreground bright galaxies in projection. The method allows a direct comparison with numerical results by drawing correspondence between the bright galaxies with halos. It leads to lensing signals that are significant enough for differentiating several dark energy models. In this work, we use the CFHTLenS catalogue to define LDPs, as well as measuring their background lensing signals. We consider several different definitions of the foreground bright galaxies (redshift range & magnitude cut). Regarding the cosmological model, we run six simulations: the first set of simulations have the same initial conditions, with $rm{w_{de}=-1,-0.5,-0.8,-1.2}$; the second set of simulations include a slightly different $Lambda$CDM model and a w(z) model from cite{2017NatAs...1..627Z}. The lensing results indicate that the models with $rm{w_{de}=-0.5,-0.8}$ are not favored, and the other four models all achieve comparable agreement with the data.
In this work, we study a class of early dark energy (EDE) models, in which, unlike in standard DE models, a substantial amount of DE exists in the matter-dominated era, self-consistently including DE perturbations. Our analysis shows that, marginalizing over the non DE parameters such as $Omega_m, H_0, n_s$, current CMB observations alone can constrain the scale factor of transition from early DE to late time DE to $a_t geq 0.44$ and width of transition to $Delta_t leq 0.37$. The equation of state at present is somewhat weakly constrained to $w_0 leq -0.6$, if we allow $H_0 < 60$ km/s/Mpc. Taken together with other observations, such as supernovae, HST, and SDSS LRGs, the constraints are tighter-- $w_0 leq -0.9, a_t leq 0.19, Delta_t leq 0.21$. The evolution of the equation of state for EDE models is thus close to $Lambda$CDM at low redshifts. Incorrectly assuming DE perturbations to be negligible leads to different constraints on the equation of state parameters, thus highlighting the necessity of self-consistently including DE perturbations in the analysis. If we allow the spatial curvature to be a free parameter, then the constraints are relaxed to $w_0 leq -0.77, a_t leq 0.35, Delta_t leq 0.35$ with $-0.014 < Omega_{kappa} < 0.031$ for CMB+other observations. For perturbed EDE models, the $2sigma$ lower limit on $sigma_8$ ($sigma_8 geq 0.59$) is much lower than that in $Lambda$CDM ($sigma_8 geq 0.72$), thus raising the interesting possibility of discriminating EDE from $Lambda$CDM using future observations such as halo mass functions or the Sunyaev-Zeldovich power spectrum.
An axion-like field comprising $sim 10%$ of the energy density of the universe near matter-radiation equality is a candidate to resolve the Hubble tension; this is the early dark energy (EDE) model. However, as shown in Hill et al. (2020), the model fails to simultaneously resolve the Hubble tension and maintain a good fit to both cosmic microwave background (CMB) and large-scale structure (LSS) data. Here, we use redshift-space galaxy clustering data to sharpen constraints on the EDE model. We perform the first EDE analysis using the full-shape power spectrum likelihood from the Baryon Oscillation Spectroscopic Survey (BOSS), based on the effective field theory (EFT) of LSS. The inclusion of this likelihood in the EDE analysis yields a $25%$ tighter error bar on $H_0$ compared to primary CMB data alone, yielding $H_0 = 68.54^{+0.52}_{-0.95}$ km/s/Mpc ($68%$ CL). In addition, we constrain the maximum fractional energy density contribution of the EDE to $f_{rm EDE} < 0.072$ ($95%$ CL). We explicitly demonstrate that the EFT BOSS likelihood yields much stronger constraints on EDE than the standard BOSS likelihood. Including further information from photometric LSS surveys,the constraints narrow by an additional $20%$, yielding $H_0 = 68.73^{+0.42}_{-0.69}$ km/s/Mpc ($68%$ CL) and $f_{rm EDE}<0.053$ ($95%$ CL). These bounds are obtained without including local-universe $H_0$ data, which is in strong tension with the CMB and LSS, even in the EDE model. We also refute claims that MCMC analyses of EDE that omit SH0ES from the combined dataset yield misleading posteriors. Finally, we demonstrate that upcoming Euclid/DESI-like spectroscopic galaxy surveys can greatly improve the EDE constraints. We conclude that current data preclude the EDE model as a resolution of the Hubble tension, and that future LSS surveys can close the remaining parameter space of this model.
We show that the nonperturbative decay of ultralight scalars into Abelian gauge bosons, recently proposed as a possible solution to the Hubble tension, produces a stochastic background of gravitational waves which is constrained by the cosmic microwave background. We simulate the full nonlinear dynamics of resonant dark photon production and the associated gravitational wave production, finding the signals to exceed constraints for the entire parameter space we consider. Our findings suggest that gravitational wave production from the decay of early dark energy may provide a unique probe of these models.
The ESA Euclid mission will produce photometric galaxy samples over 15 000 square degrees of the sky that will be rich for clustering and weak lensing statistics. The accuracy of the cosmological constraints derived from these measurements will depend on the knowledge of the underlying redshift distributions based on photometric redshift calibrations. A new approach is proposed to use the stacked spectra from Euclid slitless spectroscopy to augment the broad-band photometric information to constrain the redshift distribution with spectral energy distribution fitting. The high spectral resolution available in the stacked spectra complements the photometry and helps to break the colour-redshift degeneracy and constrain the redshift distribution of galaxy samples. We model the stacked spectra as a linear mixture of spectral templates. The mixture may be inverted to infer the underlying redshift distribution using constrained regression algorithms. We demonstrate the method on simulated Vera C. Rubin Observatory and Euclid mock survey data sets based on the Euclid Flagship mock galaxy catalogue. We assess the accuracy of the reconstruction by considering the inference of the baryon acoustic scale from angular two-point correlation function measurements. We select mock photometric galaxy samples at redshift z>1 using the self-organizing map algorithm. Considering the idealized case without dust attenuation, we find that the redshift distributions of these samples can be recovered with 0.5% accuracy on the baryon acoustic scale. The estimates are not significantly degraded by the spectroscopic measurement noise due to the large sample size. However, the error degrades to 2% when the dust attenuation model is left free. We find that the colour degeneracies introduced by attenuation limit the accuracy considering the wavelength coverage of the Euclid near-infrared spectroscopy.
This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification, and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).