Do you want to publish a course? Click here

Conjugacy problem in groups with quadratic Dehn function

179   0   0.0 ( 0 )
 Added by Mark Sapir
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We construct a finitely presented group with quadratic Dehn function and undecidable conjugacy problem. This solves E. Rips problem formulated in 1992. v2: misprints corrected. v3: lemmas 4.7, 4.10 corrected, more misprints fixed.



rate research

Read More

142 - Wenhao Wang 2020
In this paper, we compute an upper bound for the Dehn function of a finitely presented metabelian group. In addition, we prove that the same upper bound works for the relative Dehn function of a finitely generated metabelian group. We also show that every wreath product of a free abelian group of finite rank with a finitely generated abelian group can be embedded into a metabelian group with exponential Dehn function.
154 - John Crisp 2008
We prove that the conjugacy problem in right-angled Artin groups (RAAGs), as well as in a large and natural class of subgroups of RAAGs, can be solved in linear-time. This class of subgroups contains, for instance, all graph braid groups (i.e. fundamental groups of configuration spaces of points in graphs), many hyperbolic groups, and it coincides with the class of fundamental groups of ``special cube complexes studied independently by Haglund and Wise.
For every $kgeqslant 3$, we exhibit a simply connected $k$-nilpotent Lie group $N_k$ whose Dehn function behaves like $n^k$, while the Dehn function of its associated Carnot graded group $mathsf{gr}(N_k)$ behaves like $n^{k+1}$. This property and its consequences allow us to reveal three new phenomena. First, since those groups have uniform lattices, this provides the first examples of pairs of finitely presented groups with bilipschitz asymptotic cones but with different Dehn functions. The second surprising feature of these groups is that for every even integer $k geqslant 4$ the centralized Dehn function of $N_k$ behaves like $n^{k-1}$ and so has a different exponent than the Dehn function. This answers a question of Young. Finally, we turn our attention to sublinear bilipschitz equivalences (SBE). Introduced by Cornulier, these are maps between metric spaces inducing bi-Lipschitz homeomorphisms between their asymptotic cones. These can be seen as weakenings of quasiisometries where the additive error is replaced by a sublinearly growing function $v$. We show that a $v$-SBE between $N_k$ and $mathsf{gr}(N_k)$ must satisfy $v(n)succcurlyeq n^{1/(2k + 1)}$, strengthening the fact that those two groups are not quasiisometric. This is the first instance where an explicit lower bound is provided for a pair of SBE groups.
376 - M. Hull 2010
In this paper, we consider the conjugacy growth function of a group, which counts the number of conjugacy classes which intersect a ball of radius $n$ centered at the identity. We prove that in the case of virtually polycyclic groups, this function is either exponential or polynomially bounded, and is polynomially bounded exactly when the group is virtually nilpotent. The proof is fairly short, and makes use of the fact that any polycyclic group has a subgroup of finite index which can be embedded as a lattice in a Lie group, as well as exponential radical of Lie groups and Dirichlets approximation theorem.
We give a unified solution to the conjugacy problem for Thompsons groups F, T, and V. The solution uses strand diagrams, which are similar in spirit to braids and generalize tree-pair diagrams for elements of Thompsons groups. Strand diagrams are closely related to piecewise-linear functions for elements of Thompsons groups, and we use this correspondence to investigate the dynamics of elements of F. Though many of the results in this paper are known, our approach is new, and it yields elegant proofs of several old results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا