We define the orbit category for transitive topological groupoids and their equivariant CW-complexes. By using these constructions we define equivariant Bredon homology and cohomology for actions of transitive topological groupoids. We show how these theories can be obtained by looking at the action of a single isotropy group on a fiber of the anchor map, extending equivariant results for compact group actions. We also show how this extension from a single isotropy group to the entire groupoid action can be applied to the structure of principal bundles and classifying spaces.