No Arabic abstract
We study sympathetic cooling of the radial ion motion in a linear RF trap in mixed barium-ytterbium chains. Barium ions are Doppler-cooled, while ytterbium ions are cooled through their interaction with cold barium ions. We estimate the efficiency of sympathetic cooling by measuring the average occupation quantum numbers, and thus the temperature, of all radial normal modes of motion in the ion chain. The full set of orderings in a chain of two barium and two ytterbium ions have been probed, and we show that the average thermal occupation numbers for all chain configurations strongly depend on the trap aspect ratio. We demonstrate efficient sympathetic cooling of all radial normal modes for the trap aspect ratio of approximately 2.9.
Trapped ions are a promising candidate for large scale quantum computation. Several systems have been built in both academic and industrial settings to implement modestly-sized quantum algorithms. Efficient cooling of the motional degrees of freedom is a key requirement for high-fidelity quantum operations using trapped ions. Here, we present a technique whereby individual ions are used to cool individual motional modes in parallel, reducing the time required to bring an ion chain to its motional ground state. We demonstrate this technique experimentally and develop a model to understand the efficiency of our parallel sideband cooling technique compared to more traditional methods. This technique is applicable to any system using resolved sideband cooling of co-trapped atomic species and only requires individual addressing of the trapped particles.
We present and derive analytic expressions for a fundamental limit to the sympathetic cooling of ions in radio-frequency traps using cold atoms. The limit arises from the work done by the trap electric field during a long-range ion-atom collision and applies even to cooling by a zero-temperature atomic gas in a perfectly compensated trap. We conclude that in current experimental implementations this collisional heating prevents access to the regimes of single-partial-wave atom-ion interaction or quantized ion motion. We determine conditions on the atom-ion mass ratio and on the trap parameters for reaching the s-wave collision regime and the trap ground state.
We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $overline{n}_{mathrm{COM}} = 0.13 pm 0.03$, corresponding to a temperature of $12.47 pm 0.03 ~mu$K. The breathing mode is cooled to $overline{n}_{mathrm{BM}} = 0.05 pm 0.02$, corresponding to a temperature of $15.36 pm 0.01~mu$K.
We present methods to manipulate and detect the motional state and the spin state of a single antiproton or proton which are currently under development within the BASE (Baryon Antibaryon Symmetry Experiment) collaboration. These methods include sympathetic laser cooling of a single (anti-)proton using a co-trapped atomic ion as well as quantum logic spectroscopy with the two particles and could be implemented within the collaboration for state preparation and state readout in the antiproton $g$-factor measurement experiment at CERN. In our project, these techniques shall be applied using a single $^9text{Be}^+$ ion as the atomic ion in a Penning trap system at a magnetic field of 5 T. As an intermediate step, a controlled interaction of two beryllium ions in a double-well potential as well as sympathetic cooling of one ion by the other shall be demonstrated.
We present first indications of sympathetic cooling between two neutral, optically trapped atomic species. Lithium and cesium atoms are simultaneously stored in an optical dipole trap formed by the focus of a CO$_2$ laser, and allowed to interact for a given period of time. The temperature of the lithium gas is found to decrease when in thermal contact with cold cesium. The timescale of thermalization yields an estimate for the Li-Cs cross-section.