No Arabic abstract
In many shear- and pressure-driven wall-bounded turbulent flows secondary motions spontaneously develop and their interaction with the main flow alters the overall large-scale features and transfer properties. Taylor-Couette flow, the fluid motion developing in the gap between two concentric cylinders rotating at different angular velocity, is not an exception, and toroidal Taylor rolls have been observed from the early development of the flow up to the fully turbulent regime. In this manuscript we show that under the generic name of ``Taylor rolls there is a wide variety of structures that differ for the vorticity distribution within the cores, the way they are driven and their effects on the mean flow. We relate the rolls at high Reynolds numbers not to centrifugal instabilities, but to a combination of shear and anti-cyclonic rotation, showing that they are preserved in the limit of vanishing curvature and can be better understood as a pinned cycle which shows similar characteristics as the self-sustained process of shear flows. By analyzing the effect of the computational domain size, we show that this pinning is not a product of numerics, and that the position of the rolls is governed by a random process with the space and time variations depending on domain size.
We report on the modification of drag by neutrally buoyant spherical particles in highly turbulent Taylor-Couette flow. These particles can be used to disentangle the effects of size, deformability, and volume fraction on the drag, when contrasted with the drag for bubbly flows. We find that rigid spheres hardly change the drag of the system beyond the trivial viscosity effects caused by replacing the working fluid with particles. The size of the particle has a marginal effect on the drag, with smaller diameter particles showing only slightly lower drag. Increasing the particle volume fraction shows a net drag increase as the effective viscosity of the fluid is also increased. The increase in drag for increasing particle volume fraction is corroborated by performing laser Doppler anemometry where we find that the turbulent velocity fluctuations also increase with increasing volume fraction. In contrast with rigid spheres, for bubbles the effective drag reduction also increases with increasing Reynolds number. Bubbles are also much more effective in reducing the overall drag.
Air cavities, i.e. air layers developed behind cavitators, are seen as a promising drag reducing method in the maritime industry. Here we utilize the Taylor-Couette (TC) geometry, i.e. the flow between two concentric, independently rotating cylinders, to study the effect of air cavities in this closed setup, which is well-accessible for drag measurements and optical flow visualizations. We show that stable air cavities can be formed, and that the cavity size increases with Reynolds number and void fraction. The streamwise cavity length strongly depends on the axial position due to buoyancy forces acting on the air. Strong secondary flows, which are introduced by a counter-rotating outer cylinder, clearly decrease the stability of the cavities, as air is captured in the Taylor rolls rather than in the cavity. Surprisingly, we observed that local air injection is not necessary to sustain the air cavities; as long as air is present in the system it is found to be captured in the cavity. We show that the drag is decreased significantly as compared to the case without air, but with the geometric modifications imposed on the TC system by the cavitators. As the void fraction increases, the drag of the system is decreased. However, the cavitators itself significantly increase the drag due to their hydrodynamic resistance (pressure drag): In fact, a net drag increase is found when compared to the standard smooth-wall TC case. Therefore, one must first overcome the added drag created by the cavitators before one obtains a net drag reduction.
In this paper, we experimentally study the influence of large-scale Taylor rolls on the small-scale statistics and the flow organization in fully turbulent Taylor-Couette flow {for Reynolds numbers up to $text{Re}_S=3times 10^5$}. The velocity field in the gap confined by coaxial and independently rotating cylinders at a radius ratio of $eta=0.714$ is measured using planar {particle image velocimetry} in horizontal planes at different cylinder heights. Flow regions with and without prominent Taylor vortices are compared. We show that the local angular momentum transport (expressed in terms of a Nusselt number) mainly takes place in the regions of the vortex in- and outflow, where the radial and azimuthal velocity components are highly correlated. The efficient momentum transfer is reflected in intermittent bursts, which becomes visible in the exponential tails of the probability density functions of the local Nusselt number. In addition, by calculating azimuthal energy co-spectra, small-scale plumes are revealed to be the underlying structure of these bursts. These flow features are very similar to the one observed in Rayleigh-B{e}nard convection, which emphasizes the analogies of these both systems. By performing a {complex proper orthogonal decomposition}, we remarkably detect azimuthally traveling waves superimposed on the turbulent Taylor vortices, not only in the classical but also in the ultimate regime. This very large-scale flow pattern{,} which is most pronounced at the axial location of the vortex center, is similar to the well-known wavy Taylor vortex flow{,} which has comparable wave speeds, but much larger azimuthal wave numbers.
In this study, we combine experiments and direct numerical simulations to investigate the effects of the height of transverse ribs at the walls on both global and local flow properties in turbulent Taylor-Couette flow. We create rib roughness by attaching up to 6 axial obstacles to the surfaces of the cylinders over an extensive range of rib heights, up to blockages of 25% of the gap width. In the asymptotic ultimate regime, where the transport is independent of viscosity, we emperically find that the prefactor of the $Nu_{omega} propto Ta^{1/2}$ scaling (corresponding to the drag coefficient $C_f(Re)$ being constant) scales with the number of ribs $N_r$ and by the rib height $h^{1.71}$. The physical mechanism behind this is that the dominant contribution to the torque originates from the pressure forces acting on the rib which scale with rib height. The measured scaling relation of $N_r h^{1.71}$ is slightly smaller than the expected $N_r h^2$ scaling, presumably because the ribs cannot be regarded as completely isolated but interact. In the counter-rotating regime with smooth walls, the momentum transport is increased by turbulent Taylor vortices. We find that also in the presence of transverse ribs these vortices persist. In the counter-rotating regime, even for large roughness heights, the momentum transport is enhanced by these vortices.
Emulsions are omnipresent in the food industry, health care, and chemical synthesis. In this Letter the dynamics of meta-stable oil-water emulsions in highly turbulent ($10^{11}leqtext{Ta}leq 3times 10^{13}$) Taylor--Couette flow, far from equilibrium, is investigated. By varying the oil-in-water void fraction, catastrophic phase inversion between oil-in-water and water-in-oil emulsions can be triggered, changing the morphology, including droplet sizes, and rheological properties of the mixture, dramatically. The manifestation of these different states is exemplified by combining global torque measurements and local in-situ laser induced fluorescence (LIF) microscopy imaging. Despite the turbulent state of the flow and the dynamic equilibrium of the oil-water mixture, the global torque response of the system is found to be as if the fluid were Newtonian, and the effective viscosity of the mixture was found to be several times bigger or smaller than either of its constituents.