The Heisenberg limit is the superior precision available by entanglement sensors. However, entanglementis fragile against dephasing, and there is no known quantum metrology protocol that can achieve Heisenberg limited sensitivity with the presence of independent dephasing. Here, we show that the Heisenberg limit is attainable under the effect of independent dephasing under conditions where the probe qubits decohere due to both target fields and local environments. To detect the target fields, we exploit the entanglement properties to decay much faster than the classical states due to collective noise while most of the previous schemes use a coherent phase shift from the target fields. Actually, if the temporally fluctuating target fields behave as Markovian collective dephasing, we can estimate the collective dephasing rate with a sensitivity at the Heisenberg limit under the effect of independent dephasing. Our work opens the possibility for robust Heisenberg-limited metrology.