Do you want to publish a course? Click here

$hp$-Multilevel Monte Carlo Methods for Uncertainty Quantification of Compressible Flows

94   0   0.0 ( 0 )
 Added by Fabian Meyer
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We propose a novel $hp$-multilevel Monte Carlo method for the quantification of uncertainties in the compressible Navier-Stokes equations, using the Discontinuous Galerkin method as deterministic solver. The multilevel approach exploits hierarchies of uniformly refined meshes while simultaneously increasing the polynomial degree of the ansatz space. It allows for a very large range of resolutions in the physical space and thus an efficient decrease of the statistical error. We prove that the overall complexity of the $hp$-multilevel Monte Carlo method to compute the mean field with prescribed accuracy is, in best-case, of quadratic order with respect to the accuracy. We also propose a novel and simple approach to estimate a lower confidence bound for the optimal number of samples per level, which helps to prevent overestimating these quantities. The method is in particular designed for application on queue-based computing systems, where it is desirable to compute a large number of samples during one iteration, without overestimating the optimal number of samples. Our theoretical results are verified by numerical experiments for the two-dimensional compressible Navier-Stokes equations. In particular we consider a cavity flow problem from computational acoustics, demonstrating that the method is suitable to handle complex engineering problems.

rate research

Read More

We consider the problem of estimating the probability of a large loss from a financial portfolio, where the future loss is expressed as a conditional expectation. Since the conditional expectation is intractable in most cases, one may resort to nested simulation. To reduce the complexity of nested simulation, we present a method that combines multilevel Monte Carlo (MLMC) and quasi-Monte Carlo (QMC). In the outer simulation, we use Monte Carlo to generate financial scenarios. In the inner simulation, we use QMC to estimate the portfolio loss in each scenario. We prove that using QMC can accelerate the convergence rates in both the crude nested simulation and the multilevel nested simulation. Under certain conditions, the complexity of MLMC can be reduced to $O(epsilon^{-2}(log epsilon)^2)$ by incorporating QMC. On the other hand, we find that MLMC encounters catastrophic coupling problem due to the existence of indicator functions. To remedy this, we propose a smoothed MLMC method which uses logistic sigmoid functions to approximate indicator functions. Numerical results show that the optimal complexity $O(epsilon^{-2})$ is almost attained when using QMC methods in both MLMC and smoothed MLMC, even in moderate high dimensions.
In this work we develop a new hierarchical multilevel approach to generate Gaussian random field realizations in an algorithmically scalable manner that is well-suited to incorporate into multilevel Markov chain Monte Carlo (MCMC) algorithms. This approach builds off of other partial differential equation (PDE) approaches for generating Gaussian random field realizations; in particular, a single field realization may be formed by solving a reaction-diffusion PDE with a spatial white noise source function as the righthand side. While these approaches have been explored to accelerate forward uncertainty quantification tasks, e.g. multilevel Monte Carlo, the previous constructions are not directly applicable to multilevel MCMC frameworks which build fine scale random fields in a hierarchical fashion from coarse scale random fields. Our new hierarchical multilevel method relies on a hierarchical decomposition of the white noise source function in $L^2$ which allows us to form Gaussian random field realizations across multiple levels of discretization in a way that fits into multilevel MCMC algorithmic frameworks. After presenting our main theoretical results and numerical scaling results to showcase the utility of this new hierarchical PDE method for generating Gaussian random field realizations, this method is tested on a four-level MCMC algorithm to explore its feasibility.
215 - Ajay Jasra , Kody Law , 2017
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean-Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $mathrm{TOL}$, is $mathcal Oleft({mathrm{TOL}^{-3}}right)$ when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of $mathcal Oleft(mathrm{TOL}^{-2}log(mathrm{TOL}^{-1})^2right)$. Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.
Probability measures supported on submanifolds can be sampled by adding an extra momentum variable to the state of the system, and discretizing the associated Hamiltonian dynamics with some stochastic perturbation in the extra variable. In order to avoid biases in the invariant probability measures sampled by discretizations of these stochastically perturbed Hamiltonian dynamics, a Metropolis rejection procedure can be considered. The so-obtained scheme belongs to the class of generalized Hybrid Monte Carlo (GHMC) algorithms. We show here how to generalize to GHMC a procedure suggested by Goodman, Holmes-Cerfon and Zappa for Metropolis random walks on submanifolds, where a reverse projection check is performed to enforce the reversibility of the algorithm for large timesteps and hence avoid biases in the invariant measure. We also provide a full mathematical analysis of such procedures, as well as numerical experiments demonstrating the importance of the reverse projection check on simple toy examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا