Do you want to publish a course? Click here

The Far-Infrared Radio Correlation at low radio frequency with LOFAR/H-ATLAS

140   0   0.0 ( 0 )
 Added by Shaun Read
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The radio and far-infrared luminosities of star-forming galaxies are tightly correlated over several orders of magnitude; this is known as the far-infrared radio correlation (FIRC). Previous studies have shown that a host of factors conspire to maintain a tight and linear FIRC, despite many models predicting deviation. This discrepancy between expectations and observations is concerning since a linear FIRC underpins the use of radio luminosity as a star-formation rate indicator. Using LOFAR 150MHz, FIRST 1.4 GHz, and Herschel infrared luminosities derived from the new LOFAR/H-ATLAS catalogue, we investigate possible variation in the monochromatic (250$mathrm{mu m}$) FIRC at low and high radio frequencies. We use statistical techniques to probe the FIRC for an optically-selected sample of 4,082 emission-line classified star-forming galaxies as a function of redshift, effective dust temperature, stellar mass, specific star formation rate, and mid-infrared colour (an empirical proxy for specific star formation rate). Although the average FIRC at high radio frequency is consistent with expectations based on a standard power-law radio spectrum, the average correlation at 150MHz is not. We see evidence for redshift evolution of the FIRC at 150MHz, and find that the FIRC varies with stellar mass, dust temperature and specific star formation rate, whether the latter is probed using MAGPHYS fitting, or using mid-infrared colour as a proxy. We can explain the variation, to within 1$sigma$, seen in the FIRC over mid-infrared colour by a combination of dust temperature, redshift, and stellar mass using a Bayesian partial correlation technique.



rate research

Read More

Radio emission is a key indicator of star-formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of SDSS galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star-formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity--star-formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity ($L_{150}$) and SFR. Interestingly, we find that a single power-law relationship between $L_{150}$ and SFR is not a good description of all SFGs: a broken power law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects which were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.
We present a multi-wavelength analysis of star-forming galaxies in the massive cluster MS0451.6-0305 at z $sim$ 0.54 to shed new light on the evolution of the far-infrared-radio relationship in distant rich clusters. We have derived total infrared luminosities for a spectroscopically confirmed sample of cluster and field galaxies through an empirical relation based on $Spitzer$ MIPS 24 $mu$m photometry. The radio flux densities were measured from deep Very Large Array 1.4 GHz radio continuum observations. We find the ratio of far-infrared to radio luminosity for galaxies in an intermediate redshift cluster to be $q_{rm FIR}$ = 1.80$pm$0.15 with a dispersion of 0.53. Due to the large intrinsic dispersion, we do not find any observable change in this value with either redshift or environment. However, a higher percentage of galaxies in this cluster show an excess in their radio fluxes when compared to low redshift clusters ($27^{+23}_{-13}%$ to $11%$), suggestive of a cluster enhancement of radio-excess sources at this earlier epoch. In addition, the far-infrared-radio relationship for blue galaxies, where $q_{rm FIR}$ = 2.01$pm$0.14 with a dispersion of 0.35, is consistent with the predicted value from the field relationship, although these results are based on a sample from a single cluster.
In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 dwarf galaxies ($M_* < 10^9 M_odot$), from the Local Volume HI Survey (LVHIS), which is close to volume limited. It is found that LVHIS galaxies hold a tight linear FIR-radio correlation (FRC) over four orders of magnitude ($F_{1.4GHz} propto F_{FIR}^{1.00pm0.08}$). However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a conspiracy to keep the FIR-to-radio ratio generally constant for dwarf galaxies. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the conspiracy to keep the FRC alive.
We present radio observations of ultraluminous infrared galaxies (ULIRGs) using the Giant Metrewave Radio Telescope (GMRT) and combine them with archival multi-frequency observations to understand whether ULIRGs are the progenitors of the powerful radio loud galaxies in the local Universe. ULIRGs are characterized by large infrared luminosities ($L_{IR}>$10$^{12}$L$odot$), large dust masses ($sim10^{8}M_{odot}$) and vigorous star formation (star formation rates $sim$10-100 $M_{odot}~$yr$^{-1}$). Studies show that they represent the end stages of mergers of gas-rich spiral galaxies. Their luminosity can be due to both starburst activity and active galactic nuclei (AGN). We study a sample of 13 ULIRGs that have optically identified AGN characteristics with 1.28~GHz GMRT observations. Our aim is to resolve any core-jet structures or nuclear extensions and hence examine whether the ULIRGs are evolving into radio loud ellipticals. Our deep, low frequency observations show marginal extension for only one source. However, the integrated radio spectra of 9 ULIRGs show characteristics that are similar to that of GPS/CSS/CSO/young radio sources. The estimated spectral ages are 0.4 to 20 Myr and indicate that they are young radio sources and possible progenitors of radio galaxies. Hence, we conclude that although most ULIRGs do not show kpc scale extended radio emission associated with nuclear activity, their radio spectral energy distributions do show signatures of young radio galaxies.
128 - R. J. Ivison 2010
We set out to determine the ratio, q(IR), of rest-frame 8-1000um flux, S(IR), to monochromatic radio flux, S(1.4GHz), for galaxies selected at far-IR and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, and to identify any far-IR-bright outliers - useful laboratories for exploring why the far-IR/radio correlation is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-um and 1.4-GHz samples, obtained in GOODS-N using Herschel (HerMES; PEP) and the VLA. We determine bolometric IR output using ten bands spanning 24-1250um, exploiting data from PACS and SPIRE, as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L(IR)-matched sample, designed to reveal evolution of q(IR) with z, spanning log L(IR) = 11-12 L(sun) and z=0-2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies, we see tentative evidence of a break in the flux ratio, q(IR), at L(1.4GHz) ~ 10^22.7 W/Hz, where AGN are starting to dominate the radio power density, and of weaker correlations with z and T(d). From our 250-um-selected sample we identify a small number of far-IR-bright outliers, and see trends of q(IR) with L(1.4GHz), L(IR), T(d) and z, noting that some of these are inter-related. For our L(IR)-matched sample, there is no evidence that q(IR) changes significantly as we move back into the epoch of galaxy formation: we find q(IR) goes as (1+z)^gamma, where gamma = -0.04 +/- 0.03 at z=0-2; however, discounting the least reliable data at z<0.5 we find gamma = -0.26 +/- 0.07, modest evolution which may be related to the radio background seen by ARCADE2, perhaps driven by <10uJy radio activity amongst ordinary star-forming galaxies at z>1.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا