Do you want to publish a course? Click here

Charge redistribution and the Magnetoelastic transition across the first-order magnetic transition in (Mn,Fe)2(P,Si,B)

68   0   0.0 ( 0 )
 Added by Michael Maschek
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We used temperature dependent high-resolution x-ray powder diffraction and magnetization measurements to investigate structural, magnetic and electronic degrees of freedom across the ferromagnetic magneto-elastic phase transition in Mn1Fe1P0.6-wSi0.4Bw (w = 0, 0.02, 0.04, 0.06, 0.08). The magnetic transition was gradually tuned from a strong first-order (w = 0) towards a second-order magnetic transition by substituting P by B. Increasing the B content leads to a systematic increase in the magnetic transition temperature and a decrease in thermal hysteresis, which completely vanishes for w = 0.08. Furthermore, the largest changes in lattice parameter across the magnetic transition occur for w = 0, which systematically becomes smaller approaching the samples with w = 0.08. Electron density plots show a strong directional preference of the electronic distribution on the Fe site, which indicates the forming of bonds between Fe atoms and Fe and P/Si in the paramagnetic phase. On the other hand, the Mn-site shows no preferred directions resembling the behaviour of a free electron gas. Due to the low B concentrations (w = 0 - 0.08), distortions of the lattice are limited. However, even small amounts of B strongly disturb the overall topology of the electron density across the unit cell. Samples containing B show a strongly reduced variation in the electron density compared to the parent compound without B.



rate research

Read More

419 - Y. J. Li , F. Jin , Z. Y. Mi 2020
We report structural and physical properties of the single crystalline ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$. The X-ray diffraction(XRD) results show that ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$ adopts the trigonal ${mathrm{Ca}}{mathrm{Al}}_{2}{mathrm{Si}}_{2}$-type structure. Temperature dependent electrical resistivity $rho(T)$ measurements indicate an insulating ground state for ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$ with activation energies of 40 meV and 0.64 meV for two distinct regions, respectively. Magnetization measurements show no apparent magnetic phase transition under 400 K. Different from other ${mathrm{A}}{mathrm{Mn}}_{2}{mathrm{Pn}}_{2}$ (A = Ca, Sr, and Ba, and Pn = P, As, and Sb) compounds with the same structure, heat capacity $C_{mathrm{p}}(T)$ and $rho(T)$ reveal that ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$ has a first-order transition at $T$ = 69.5 K and the transition temperature shifts to high temperature upon increasing pressure. The emergence of plenty of new Raman modes below the transition, clearly suggests a change in symmetry accompanying the transition. The combination of the structural, transport, thermal and magnetic measurements, points to an unusual origin of the transition.
114 - Marco Piazzi 2017
We study heat flux avalanches occurring at the first order transition in La(Fe-Mn-Si)$_{13}$-H$_{1.65}$ magnetocaloric material. As the transition is associated to the phase boundaries motion that gives rise to the latent heat, we develop a non equilibrium thermodynamic model. By comparing the model with experimental calorimetry data available for Mn=0.18, we find the values of the intrinsic kinetic parameter $R_L$, expressing the damping for the moving boundary interface, at different magnetic fields. We conclude that by increasing field, thus approaching the critical point, the avalanches increase in number and their kinetics is slowed down.
Clear anomalies in the lattice thermal expansion (deviation from linear variation) and elastic properties (softening of the sound velocity) at the antiferromagnetic-to-paramagnetic transition are observed in the prototypical multiferroic BiFeO3 using a combination of picosecond acoustic pump-probe and high-temperature X-ray diffraction experiments. Similar anomalies are also evidenced using first-principles calculations supporting our experimental findings. Those calculations in addition to a simple Landau-like model we also developed allow to understand the elastic softening and lattice change at T_N as a result of magnetostriction combined with electrostrictive and magnetoelectric couplings which renormalize the elastic constants of the high-temperature reference phase when the critical T_N temperature is reached.
572 - M. Hudl , D. Campanini , L. Caron 2014
The specific heat and thermodynamics of ${rm Fe}_2{rm P}$ single-crystals around the first order paramagnetic (PM) to ferromagnetic (FM) phase transition at $T_{rm C} = 217 ,{rm K}$ are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H-T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the $c$-axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields, the phase transition is split into two, with an intermediate FM phase where there is no spontaneous magnetization along the $c$-axis. The zero-field transition displays a text-book example of a first order transition with different phase stability limits on heating and cooling. The results have special significance since ${rm Fe}_2{rm P}$ is the parent material to a family of compounds with outstanding magnetocaloric properties.
Spin wave dispersion in the metallic antiferromagnet Mn$_3$Pt was investigated just above the order-order transition temperature by using the inelastic neutron scattering technique. The spin wave dispersion at $T = 400$ K along [100], [110] and [111] directions was isotropic within the measurement accuracy. The dispersion was described by $({hbaromega})^2 = c^2q^2 + Delta^2$ with $c = 190$ meV {AA} and $Delta = 3.3$ meV. Compared with the dispersion at $T = 419$ K previously reported, the result demonstrates a large reduction of the stiffness constant $c$ with increasing temperature. This is similar to that observed in the metallic antiferromagnet FePt$_3$, and is an indication of the itinerancy of the magnetic moments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا