Do you want to publish a course? Click here

High speed flux sampling for tunable superconducting qubits with an embedded cryogenic transducer

407   0   0.0 ( 0 )
 Added by Brooks Foxen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a high speed on-chip flux measurement using a capacitively shunted SQUID as an embedded cryogenic transducer and apply this technique to the qualification of a near-term scalable printed circuit board (PCB) package for frequency tunable superconducting qubits. The transducer is a flux tunable LC resonator where applied flux changes the resonant frequency. We apply a microwave tone to probe this frequency and use a time-domain homodyne measurement to extract the reflected phase as a function of flux applied to the SQUID. The transducer response bandwidth is 2.6 GHz with a maximum gain of $rm 1200^circ/Phi_0$ allowing us to study the settling amplitude to better than 0.1%. We use this technique to characterize on-chip bias line routing and a variety of PCB based packages and demonstrate that step response settling can vary by orders of magnitude in both settling time and amplitude depending on if normal or superconducting materials are used. By plating copper PCBs in aluminum we measure a step response consistent with the packaging used for existing high-fidelity qubits.

rate research

Read More

Superconducting flux qubits are a promising candidate for realizing quantum information processing and quantum simulations. Such devices behave like artificial atoms, with the advantage that one can easily tune the atoms internal properties. Here, by harnessing this flexibility, we propose a technique to minimize the inhomogeneous broadening of a large ensemble of flux qubits by tuning only the external flux. In addition, as an example of many-body physics in such an ensemble, we show how to observe superradiance, and its quadratic scaling with ensemble size, using a tailored microwave control pulse that takes advantage of the inhomogeneous broadening itself to excite only a sub-ensemble of the qubits. Our scheme opens up an approach to using superconducting circuits to explore the properties of quantum many-body systems.
Quantum computing hardware has received world-wide attention and made considerable progress recently. YIG thin film have spin wave (magnon) modes with low dissipation and reliable control for quantum information processing. However, the coherent coupling between a quantum device and YIG thin film has yet been demonstrated. Here, we propose a scheme to achieve strong coupling between superconducting flux qubits and magnon modes in YIG thin film. Unlike the direct $sqrt{N}$ enhancement factor in coupling to the Kittel mode or other spin ensembles, with N the total number of spins, an additional spatial dependent phase factor needs to be considered when the qubits are magnetically coupled with the magnon modes of finite wavelength. To avoid undesirable cancelation of coupling caused by the symmetrical boundary condition, a CoFeB thin layer is added to one side of the YIG thin film to break the symmetry. Our numerical simulation demonstrates avoided crossing and coherent transfer of quantum information between the flux qubits and the standing spin waves in YIG thin films. We show that the YIG thin film can be used as a tunable switch between two flux qubits, which have modified shape with small direct inductive coupling between them. Our results manifest that it is possible to couple flux qubits while suppressing undesirable cross-talk.
We have studied the impact of low-frequency magnetic flux noise upon superconducting transmon qubits with various levels of tunability. We find that qubits with weaker tunability exhibit dephasing that is less sensitive to flux noise. This insight was used to fabricate qubits where dephasing due to flux noise was suppressed below other dephasing sources, leading to flux-independent dephasing times T2* ~ 15 us over a tunable range of ~340 MHz. Such tunable qubits have the potential to create high-fidelity, fault-tolerant qubit gates and fundamentally improve scalability for a quantum processor.
We demonstrate diabatic two-qubit gates with Pauli error rates down to $4.3(2)cdot 10^{-3}$ in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.
We experimentally confirm the functionality of a coupling element for flux-based superconducting qubits, with a coupling strength $J$ whose sign and magnitude can be tuned {it in situ}. To measure the effective $J$, the groundstate of a coupled two-qubit system has been mapped as a function of the local magnetic fields applied to each qubit. The state of the system is determined by directly reading out the individual qubits while tunneling is suppressed. These measurements demonstrate that $J$ can be tuned from antiferromagnetic through zero to ferromagnetic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا