A massive planet in a protoplanetary disc will open a gap in the disc material which acts as a transition between Type I and Type II planetary migration. Type II migration is slower than Type I migration, however it is still desirable to slow down Type II migration to allow gas giant planets with semi-major axis in the range 5 to 10AU to exist, similarly to our Solar system. We investigate a method of slowing down and reversing Type II migration by heating the outer gap edge due to incident radiation from the central star. Using an approximate vertically averaged heating method we find that Type II migration can be slowed or in extreme cases reversed if we assume near maximum allowed irradiation from the central star. Therefore, we believe this is a very interesting phenomenon that should be investigated in greater detail using three dimensional hydrodynamic and radiative transfer simulations.