No Arabic abstract
A second harmonic RF cavity which uses perpendicularly biased garnet for frequency tuning is currently being constructed for use in the Fermilab Booster. The cavity will operate at twice the fundamental RF frequency, from ~76 - 106 MHz, and will be turned on only during injection, and transition or extraction. Its main purpose is to reduce beam loss as required by Fermilabs Proton Improvement Plan (PIP). After three years of optimization and study, the cavity design has been finalized and all constituent parts have been received. We discuss the design aspects of the cavity and its associated systems, component testing, and status of the cavity construction.
A perpendicularly biased tuneable 2nd harmonic cavity is being constructed for use in the Fermilab Booster. The cavitys tuner uses National Magnetics AL800 garnet as the tuning media. For quality control, the magnetic properties of the material and the uniformity of the properties within the tuner must be assessed. We describe two tests which are performed on the rings and on their corresponding witness samples.
A perpendicularly biased 2nd harmonic cavity is being designed and built for the Fermilab Booster. Its purpose is to flatten the bucket at injection and thus change the longitudinal beam distribution to decrease space charge effects. It can also help at extraction. The cavity frequency range is 76 - 106 MHz. The power amplifier will be built using the Y567B tetrode, which is also used for the fundamental mode cavities in the Fermilab Booster. We discuss recent progress on the cavity, the biasing solenoid design and plans for testing the tuners garnet material.
The Fermilab Proton Source machines, constituted by Pre-Injector, conventional Linac and Booster synchrotron, at Fermi National Accelerator Laboratory (Fermilab) had have a long history of successful beam operations. Built in late 60s, the Fermilab Proton Source began operations early in the 70s and since then it has successful provided protons to support the laboratory physics experiments. During the past decade, Booster performance reached unprecedented proton flux delivery of the order of 1.0-1.1E17 protons per hour, corresponding to 40 kW of beam power while maintained an allowed upper limit of 525 W of beam loss in the tunnel. In order to achieve this historical performance, major hardware upgrades were made in the machine combined with improvements in beam orbit control and operational awareness. Once again, the Proton Source has been charged to double their beam throughput, while maintaining the present residual activation levels, to meet the laboratory Intensity Frontier program goals until new machines are built and operational to replace them. In this paper we will discuss the plans involved in reaching even higher beam throughput in Booster.
Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Therefore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.
It has been observed cite{break} that breakdown in an 805 MHz pill-box cavi ty occurs at much lower gradients as an external axial magnetic field is inc reased. This effect was not observed with on open iris cavity. It is propose d that this effect depends on the relative angles of the magnetic and maximu m electric fields: parallel in the pill-box case; at an angle in the open ir is case. If so, using an open iris structure with solenoid coils in the iris es should perform even better. A lattice, using this principle, is presented, for use in 6D cooling for a Muon Collider. Experimental layouts to test th is principle are proposed.