Do you want to publish a course? Click here

Forward Drell-Yan production at the LHC in the BFKL formalism with collinear corrections

67   0   0.0 ( 0 )
 Added by Agustin Sabio Vera
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by the recent work of Brzeminski, Motyka, Sadzikowski and Stebel in arXiv:1611.04449, where forward Drell--Yan production is studied in proton-proton collisions at the LHC, we improve their calculation by introducing an unintegrated gluon density obtained in arXiv:1209.1353 and arXiv:1301.5283 from a fit to combined HERA data at small values of Bjorken $x$. This gluon density was calculated within the BFKL formalism at next-to-leading order with collinear corrections. We show that it generates a good description of the forward Drell--Yan cross section dependence on the invariant mass of the lepton pair both for LHCb and ATLAS data.



rate research

Read More

We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formula due to saturation effects in the dipole cross section. We develop a twist expansion in powers of Q_s^2/M^2 where Q_s is the saturation scale and M the invariant mass of the produced lepton pair. For the nominal LHC energy the leading twist description is sufficient down to masses of 6 GeV. Below that value the higher twist terms give a significant contribution.
We propose a new process which probes the BFKL dynamics in the high energy proton-proton scattering, namely the forward Drell-Yan (DY) production accompanied by a backward jet, separated from the DY lepton pair by a large rapidity interval. The proposed process probes higher rapidity differences and smaller transverse momenta than in the Mueller-Navelet jet production. It also offers a possibility of measuring new observables like leptons angular distribution coefficients in the DY lepton pair plus jet production.
Production of a forward Drell-Yan lepton pair accompanied by a jet separated by a large rapidity interval is proposed to study the BFKL evolution at the LHC. Several observables to be measured are presented including the azimuthal angle dependence of the lepton pair which allows to determine Drell-Yan structure functions.
We consider a four site Higgsless model based on the $SU(2)_Ltimes SU(2)_1times SU(2)_2times U(1)_Y$ gauge symmetry, which predicts two neutral and four charged extra gauge bosons, $Z_{1,2}$ and $W^pm_{1,2}$. We compute the properties of the new particles, and derive indirect and direct limits on their masses and couplings from LEP and Tevatron data. In contrast to other Higgsless models, characterized by fermiophobic extra gauge bosons, here sizeable fermion-boson couplings are allowed by the electroweak precision data. The prospects of detecting the new predicted particles in the favoured Drell-Yan channel at the LHC are thus investigated. The outcome is that all six extra gauge bosons could be discovered in the early stage of the LHC low-luminosity run.
144 - A. Kusina , T. Stavreva , S. Berge 2012
Global analyses of Parton Distribution Functions (PDFs) have provided incisive constraints on the up and down quark components of the proton, but constraining the other flavor degrees of freedom is more challenging. Higher-order theory predictions and new data sets have contributed to recent improvements. Despite these efforts, the strange quark PDF has a sizable uncertainty, particularly in the small x region. We examine the constraints from experiment and theory, and investigate the impact of this uncertainty on LHC observables. In particular, we study W/Z production to see how the s-quark uncertainty propagates to these observables, and examine the extent to which precise measurements at the LHC can provide additional information on the proton flavor structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا