No Arabic abstract
We investigate the spectral profiles of time signals attributed to coherent phonon generation in an undoped Si crystal. Here, the retarded longitudinal-optical (LO) phonon Green function relevant to the temporal variance of induced charge density of ionic cores is calculated by employing the polaronic quasiparticle model developed by the authors [Y. Watanabe et al., Phys. Rev. B 95, 014301 (2017); ibid., 96, 125204 (2017)]. The spectral asymmetry is revealed in the frequency domain of the signals under the condition that an LO phonon mode stays almost energetically resonant with a plasmon mode in the early time region; this lasts for approximately 100 fs immediately after the irradiation of an ultrashort pump-laser pulse. It is understood that based on the adiabatic picture in time, this asymmetry is caused by the Rosen-Zener coupling between both modes. The associated experimental results are obtained by measuring time-dependent electro-optic reflectivity signals, and it is proved that these are in harmony with the calculated ones. The spectra become more symmetric, as the photoexcited carrier density further changes from that meeting the above condition to higher and lower sides of carrier densities. Moreover, the effect of optical nutation of carrier density on the CP signals is addressed, and the present results are compared with the asymmetry caused by transient Fano resonance, and the spectral profiles observed in a GaAs crystal in the text.
A novel phase field model has been developed to study the effect of coherent precipitate on the Zener pinning of matrix grain boundaries. The model accounts for misfit strain between precipitate and matrix as well as the elastic inhomogeneity and anisotropy between them. The results show that increase in elastic misfit, elastic inhomogeneity, and elastic anisotropy increases the coarsening rate of the precipitates. Increased coarsening of precipitates in turn decreases the pinning of grain boundaries. Therefore, increase in misfit strain, elastic inhomogeneity and anisotropy negatively affect the Zener pinning through coherent precipitate. This study shows elastic anisotropy gives rise to the needle shape precipitate. It has also been shown that these needle shaped precipitates are not very effective in Zener pinning. This study provides an understanding into the effect of coherent precipitate on the Zener pinning of matrix grain boundaries.
Ultrafast time-resolved differential reflectivity of Bi2Se3 crystals is studied using optical pump-probe spectroscopy. Three distinct relaxation processes are found to contribute to the initial transient reflectivity changes. The deduced relaxation timescale and the sign of the reflectivity change suggest that electron-phonon interactions and defect-induced charge trapping are the underlying mechanisms for the three processes. After the crystal is exposed to air, the relative strength of these processes is altered and becomes strongly dependent on the excitation photon energy.
Vibrational energy transfer from photo-excited single-wall carbon nanotubes (SWCNTs) to coupled proteins is a key to engineer thermally induced biological reactions such as photothermal therapy. Here, we explored vibrational energy transfer from the photo-excited SWCNTs to different adsorbed biological materials by means of a femtosecond pump-probe technique. We show that the vibrational relaxation time of the radial breathing modes (RBMs) in SWCNTs significantly depends on the structure of coupled materials, i.e. proteins or biopolymers, indicating the vibrational energy transfer is governed by overlap of phonon density of states between the SWCNTs and coupled materials.
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
We synthesize sub-THz longitudinal quasi-monochromatic acoustic phonons in a SrTiO$_3$ single crystal using a SrRuO$_3$/SrTiO$_3$ superlattice as an optical-acoustic transducer. The generated acoustic phonon spectrum is determined using ultrafast X-ray diffraction. The analysis of the generated phonon spectrum in the time domain reveals a k-vector dependent phonon lifetime. It is observed that even at sub-THz frequencies the phonon lifetime agrees with the 1/$omega^2$ power law known from Akhiezers model for hyper sound attenuation. The observed shift of the synthesized spectrum to the higher $q$ is discussed in the framework of non-linear effects appearing due to the high amplitude of the synthesized phonons.