Do you want to publish a course? Click here

Constraining the p-mode--g-mode tidal instability with GW170817

110   0   0.0 ( 0 )
 Added by Correspondi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the impact of a proposed tidal instability coupling $p$-modes and $g$-modes within neutron stars on GW170817. This non-resonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes Factor ($ln B^{pg}_{!pg}$) comparing our $p$-$g$ model to a standard one. We find that the observed signal is consistent with waveform models that neglect $p$-$g$ effects, with $ln B^{pg}_{!pg} = 0.03^{+0.70}_{-0.58}$ (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include $p$-$g$ effects and recovering them with the $p$-$g$ model, we show that there is a $simeq 50%$ probability of obtaining similar $ln B^{pg}_{!pg}$ even when $p$-$g$ effects are absent. We find that the $p$-$g$ amplitude for 1.4 $M_odot$ neutron stars is constrained to $lesssim text{few}times10^{-7}$, with maxima a posteriori near $sim 10^{-7}$ and $p$-$g$ saturation frequency $sim 70, mathrm{Hz}$. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest a $p$-$g$ amplitude $lesssim 10^{-6}$ and $lesssim 10^{3}$ modes saturating by wave breaking. Thus, the measured constraints only rule out extreme values of the $p$-$g$ parameters. They also imply that the instability dissipates $lesssim 10^{51}, mathrm{ergs}$ over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.

rate research

Read More

63 - Nevin N. Weinberg 2015
We recently described an instability due to the nonlinear coupling of p-modes to g-modes and, as an application, we studied the stability of the tide in coalescing binary neutron stars. Although we found that the tide is p-g unstable early in the inspiral and rapidly drives modes to large energies, our analysis only accounted for three-mode interactions. Venumadhav, Zimmerman, and Hirata showed that four-mode interactions must also be accounted for as they enter into the analysis at the same order. They found a near-exact cancellation between three- and four-mode interactions and concluded that while the tide in binary neutron stars can be p-g unstable, the growth rates are not fast enough to impact the gravitational wave signal. Their analysis assumes that the linear tide is incompressible, which is true of the static linear tide (the m=0 harmonic) but not the non-static linear tide (m=+/- 2). Here we account for the compressibility of the non-static linear tide and find that the three- and four-mode interactions no longer cancel. As a result, we find that the instability can rapidly drive modes to significant energies (there is time for several dozen e-foldings of growth before the binary merges). We also show that linear damping interferes with the cancellation and may further enhance the p-g growth rates. The early onset of the instability (at gravitational wave frequencies near 50 Hz), the rapid growth rates, and the large number of unstable modes (> 10^3), suggest that the instability could impact the phase evolution of gravitational waves from binary neutron stars. Assessing its impact will require an understanding of how the instability saturates and is left to future work.
Neutron stars are the densest objects in the Universe, with $M sim 1.4 M_{odot}$ and $R sim 12$ km, and the equation of state associated to their internal composition is still unknown. The extreme conditions to which matter is subjected inside neutron stars could lead to a phase transition in their inner cores, giving rise to a hybrid compact object. The observation of $2M_{odot}$ binary pulsars (PSR~J1614-2230, PSR~J0343$+$0432 and PSR~J0740$+$6620) strongly constraints theoretical models of the equation of state. Moreover, the detection of gravitational waves emitted during the binary neutron star merger, GW170817, and its electromagnetic counterpart, GRB170817A, impose additional constraints on the tidal deformability. In this work, we investigate hybrid stars with sequential phase transitions hadron-quark-quark in their cores. We assume that both phase transitions are sharp and analyse the rapid and slow phase conversion scenarios. For the outer core, we use modern hadronic equations of state. For the inner core we employ the constant speed of sound parametrization for quark matter. We analyze more than 3000 hybrid equations of state, taking into account the recent observational constraints from neutron stars. The effects of hadron-quark-quark phase transitions on the normal oscillation modes $f$ and $g$, are studied under the Cowling relativistic approximation. Our results show that, in the slow conversion regime, a second quark-quark phase transition gives rise to a new $g_2$~mode. We discuss the observational implications of our results associated to the gravitational waves detection and the possibility of detecting hints of sequential phase transitions and the associated $g_2$~mode.
We perform a systematic study of the dependence of the r-mode phenomenology in normal fluid pulsar neutron stars on the symmetry energy slope parameter $L$. An essential ingredient in this study is the bulk viscosity, which is evaluated consistently for several equations of state corresponding to different values of the slope parameter $L$. Direct Urca processes, which are allowed from a critical $L$-value onwards, enhance the bulk viscosity and have large influence on the $r$-mode features, such as the instability boundary and spin-down properties of newborn neutron stars. The magnitude of the changes in the $r$-mode properties induced by the direct Urca processes are driven by the $L$-value of the equation of state and the mass of the pulsar. The study has been done by using a family of equations of state of $beta$-equilibrated neutron star matter obtained with the finite range simple effective interaction, which provides realistic results for nuclear matter and finite nuclei properties. These equations of state predict the same properties in symmetric nuclear matter and have the same value of the symmetry energy parameter, $E_s(rho_0)$, but differ in the slope parameter $L$. The range chosen for the variation of $L$ is decided from the tidal deformability data extracted from the GW170817 event and the maximum mass constraint.
In this work we consider strange stars formed by quark matter in the color-flavor-locked (CFL) phase of color superconductivity. The CFL phase is described by a Nambu-Jona-Lasinio model with four-fermion vector and diquark interaction channels. The effect of the color superconducting medium on the gluons are incorporated into the model by including the gluon self-energy in the thermodynamic potential. We construct parametrizations of the model by varying the vector coupling $G_V$ and comparing the results to the data on tidal deformability from the GW170817 event, the observational data on maximum masses from massive pulsars such as the MSP J0740+6620, and the mass/radius fits to NICER data for PSR J003+0451. Our results points out to windows for the $G_V$ parameter space of the model, with and without gluon effects included, that are compatible with all these astrophysical constraints, namely, $0.21<G_V/G_S<0.4$, and $0.02<G_V/G_S<0.1$, respectively. We also observe a strong correlation between the tidal deformabilites of the GW170817 event and $G_V$. Our results indicate that strange stars cannot be ruled out in collisions of compact binaries from the structural point of view.
We have discovered both intermediate-order gravity mode and low-order pressure mode pulsation in the same star, HD 209295. It is therefore both a Gamma Doradus and a Delta Scuti star, which makes it the first pulsating star to be a member of two classes. The star is a single-lined spectroscopic binary with an orbital period of 3.10575 d and an eccentricity of 0.352. Weak pulsational signals are found in both the radial velocity and line-profile variations, allowing us to show that the two highest-amplitude Gamma Doradus pulsation modes are consistent with l=1 and |m|=1. In our 280 h of BVI multi-site photometry we detected ten frequencies in the light variations, one in the Delta Scuti regime and nine in the Gamma Doradus domain. Five of the Gamma Doradus frequencies are exact integer multiples of the orbital frequency. This observation leads us to suspect they are tidally excited. Results of theoretical modeling (stability analysis, tidal excitation) were consistent with the observations. We could not detect the secondary component of the system in infrared photometry, suggesting that it may not be a main-sequence star. Archival data of HD 209295 show a strong ultraviolet excess, the origin of which is not known. The orbit of the primary is consistent with a secondary mass of M > 1.04 Msun indicative of a neutron star or a white dwarf companion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا