Do you want to publish a course? Click here

Non-linear Waves and Instabilities Leading to Secondary Reconnection in Reconnection Outflows

159   0   0.0 ( 0 )
 Added by Giovanni Lapenta
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reconnection outflows are regions of intense recent scrutiny, from in situ observations and from simulations. These regions are host to a variety of instabilities and intense energy exchanges, often even superior to the main reconnection site. We report here a number of results drawn from investigation of simulations. First, the outflows are observed to become unstable to drift instabilities. Second, these instabilities lead to the formation of secondary reconnection sites. Third, the secondary processes are responsible for large energy exchanges and particle energization. Finally, the particle distribution function are modified to become non-Maxwellian and include multiple interpenetrating populations.



rate research

Read More

Reconnection outflows are highly energetic directed flows that interact with the ambient plasma or with flows from other reconnection regions. Under these conditions the flow becomes highly unstable and chaotic, as any flow jets interacting with a medium. We report here massively parallel simulations of the two cases of interaction between outflow jets and between a single outflow with an ambient plasma. We find in both case the development of a chaotic magnetic field, subject to secondary reconnection events that further complicate the topology of the field lines. The focus of the present analysis is on the energy balance. We compute each energy channel (electromagnetic, bulk, thermal, for each species) and find where the most energy is exchanged and in what form. The main finding is that the largest energy exchange is not at the reconnection site proper but in the regions where the outflowing jets are destabilized.
Data from the NASA Magnetospheric Multiscale (MMS) mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earths magnetosphere and the solar wind (the magnetopause). High-resolution measurements of plasmas, electric and magnetic fields, and waves are used to identify highly localized (~15 electron Debye lengths) standing wave structures with large electric-field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory dissipation, which appears as alternatingly positive and negative values of J dot E (dissipation). For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the EDR. For larger guide fields the structures also occur near the reconnection x-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide-field-aligned electrons at the x-line).
We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earths dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earths polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.
Based on global hybrid simulation results, we predict that foreshock turbulence can reach the magnetopause and lead to reconnection as well as Earth-sized indents. Both the interplanetary magnetic field (IMF) and solar wind are constant in our simulation, and hence all dynamics are generated by foreshock instabilities. The IMF in the simulation is mostly Sun-Earth aligned with a weak northward and zero dawn-dusk component, such that subsolar magnetopause reconnection is not expected without foreshock turbulence modifying the magnetosheath fields. We show a reconnection example to illustrate that the turbulence can create large magnetic shear angles across the magnetopause to induce local bursty reconnection. Magnetopause reconnection and indents developed from the impact of foreshock turbulence can potentially contribute to dayside loss of planetary plasmas.
We test and compare a number of existing models predicting the location of magnetic reconnection at Earths dayside magnetopause for various solar wind conditions. We employ robust image processing techniques to determine the locations where each model predicts reconnection to occur. The predictions are then compared to the magnetic separators, the magnetic field lines separating different magnetic topologies. The predictions are tested in distinct high-resolution simulations with interplanetary magnetic field (IMF) clock angles ranging from 30 to 165 degrees in global magnetohydrodynamic simulations using the three-dimensional Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code with a uniform resistivity, although the described techniques can be generally applied to any self-consistent magnetosphere code. Additional simulations are carried out to test location model dependence on IMF strength and dipole tilt. We find that most of the models match large portions of the magnetic separators when the IMF has a southward component, with the models saying reconnection occurs where the local reconnection rate and reconnection outflow speed are maximized performing best. When the IMF has a northward component, none of the models tested faithfully map the entire magnetic separator, but the maximum magnetic shear model is the best at mapping the separator in the cusp region where reconnection has been observed. Predictions for some models with northward IMF orientations improve after accounting for plasma flow shear parallel to the reconnecting components of the magnetic fields. Implications for observations are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا