Do you want to publish a course? Click here

Exploring Parallel Execution Strategies for Constraint Handling Rules - Work-in-Progress Report

96   0   0.0 ( 0 )
 Added by Daniel Gall
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Constraint Handling Rules (CHR) is a declarative rule-based formalism and language. Concurrency is inherent as rules can be applied to subsets of constraints in parallel. Parallel implementations of CHR, be it in software, be it in hardware, use different execution strategies for parallel execution of CHR programs depending on the implementation language. In this report, our goal is to analyze parallel execution of CHR programs from a more general conceptual perspective. We want to experimentally see what is possible when CHR programs are automatically parallelized. For this purpose, a sequential simulation of parallel CHR execution is used to systematically encode different parallel execution strategies. In exhaustive experiments on some typical examples from the literature, parallel and sequential execution can be compared to each other. The number of processors can be bounded or unbounded for a more theoretical analysis. As a result, some preliminary but indicative observations on the influence of the execution strategy can be made for the different problem classes and in general.



rate research

Read More

83 - Armin Wolf 2004
The most advanced implementation of adaptive constraint processing with Constraint Handling Rules (CHR) allows the application of intelligent search strategies to solve Constraint Satisfaction Problems (CSP). This presentation compares an improved version of conflict-directed backjumping and two variants of dynamic backtracking with respect to chronological backtracking on some of the AIM instances which are a benchmark set of random 3-SAT problems. A CHR implementation of a Boolean constraint solver combined with these different search strategies in Java is thus being compared with a CHR implementation of the same Boolean constraint solver combined with chronological backtracking in SICStus Prolog. This comparison shows that the addition of ``intelligence to the search process may reduce the number of search steps dramatically. Furthermore, the runtime of their Java implementations is in most cases faster than the implementations of chronological backtracking. More specifically, conflict-directed backjumping is even faster than the SICStus Prolog implementation of chronological backtracking, although our Java implementation of CHR lacks the optimisations made in the SICStus Prolog system. To appear in Theory and Practice of Logic Programming (TPLP).
Confluence denotes the property of a state transition system that states can be rewritten in more than one way yielding the same result. Although it is a desirable property, confluence is often too strict in practical applications because it also considers states that can never be reached in practice. Additionally, sometimes states that have the same semantics in the practical context are considered as different states due to different syntactic representations. By introducing suitable invariants and equivalence relations on the states, programs may have the property to be confluent modulo the equivalence relation w.r.t. the invariant which often is desirable in practice. In this paper, a sufficient and necessary criterion for confluence modulo equivalence w.r.t. an invariant for Constraint Handling Rules (CHR) is presented. It is the first approach that covers invariant-based confluence modulo equivalence for the de facto standard semantics of CHR. There is a trade-off between practical applicability and the simplicity of proving a confluence property. Therefore, a better manageable subset of equivalence relations has been identified that allows for the proposed confluence criterion and and simplifies the confluence proofs by using well established CHR analysis methods.
High-level programming languages such as Python are increasingly used to provide intuitive interfaces to libraries written in lower-level languages and for assembling applications from various components. This migration towards orchestration rather than implementation, coupled with the growing need for parallel computing (e.g., due to big data and the end of Moores law), necessitates rethinking how parallelism is expressed in programs. Here, we present Parsl, a parallel scripting library that augments Python with simple, scalable, and flexible constructs for encoding parallelism. These constructs allow Parsl to construct a dynamic dependency graph of components that it can then execute efficiently on one or many processors. Parsl is designed for scalability, with an extensible set of executors tailored to different use cases, such as low-latency, high-throughput, or extreme-scale execution. We show, via experiments on the Blue Waters supercomputer, that Parsl executors can allow Python scripts to execute components with as little as 5 ms of overhead, scale to more than 250 000 workers across more than 8000 nodes, and process upward of 1200 tasks per second. Other Parsl features simplify the construction and execution of composite programs by supporting elastic provisioning and scaling of infrastructure, fault-tolerant execution, and integrated wide-area data management. We show that these capabilities satisfy the needs of many-task, interactive, online, and machine learning applications in fields such as biology, cosmology, and materials science.
In recent years the computing landscape has seen an in- creasing shift towards specialized accelerators. Field pro- grammable gate arrays (FPGAs) are particularly promising as they offer significant performance and energy improvements compared to CPUs for a wide class of applications and are far more flexible than fixed-function ASICs. However, FPGAs are difficult to program. Traditional programming models for reconfigurable logic use low-level hardware description languages like Verilog and VHDL, which have none of the pro- ductivity features of modern software development languages but produce very efficient designs, and low-level software lan- guages like C and OpenCL coupled with high-level synthesis (HLS) tools that typically produce designs that are far less efficient. Functional languages with parallel patterns are a better fit for hardware generation because they both provide high-level abstractions to programmers with little experience in hard- ware design and avoid many of the problems faced when gen- erating hardware from imperative languages. In this paper, we identify two optimizations that are important when using par- allel patterns to generate hardware: tiling and metapipelining. We present a general representation of tiled parallel patterns, and provide rules for automatically tiling patterns and gen- erating metapipelines. We demonstrate experimentally that these optimizations result in speedups up to 40x on a set of benchmarks from the data analytics domain.
67 - Nikos Vasilakis 2020
This paper presents {scshape PaSh}, a system for parallelizing POSIX shell scripts. Given a script, {scshape PaSh} converts it to a dataflow graph, performs a series of semantics-preserving program transformations that expose parallelism, and then converts the dataflow graph back into a script -- one that adds POSIX constructs to explicitly guide parallelism coupled with {scshape PaSh}-provided {scshape Unix}-aware runtime primitives for addressing performance- and correctness-related issues. A lightweight annotation language allows command developers to express key parallelizability properties about their commands. An accompanying parallelizability study of POSIX and GNU commands -- two large and commonly used groups -- guides the annotation language and optimized aggregator library that {scshape PaSh} uses. Finally, {scshape PaSh}s {scshape PaSh}s extensive evaluation over 44 unmodified {scshape Unix} scripts shows significant speedups ($0.89$--$61.1times$, avg: $6.7times$) stemming from the combination of its program transformations and runtime primitives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا