Do you want to publish a course? Click here

Spatial extent of the excited exciton states in WS$_2$ monolayers from diamagnetic shifts

313   0   0.0 ( 0 )
 Added by Alexey Chernikov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally study the radii of excitons in hBN-encapsulated WS2 monolayers by means of magneto-optical reflectance spectroscopy at cryogenic temperatures in magnetic fields up to 29 T. We observe field-induced energy shifts of the exciton ground and excited states due to valley Zeeman and diamagnetic effects. We find the g factor of the first excited state of $-4.2(+/-0.1) to be essentially equal to that of the ground state of -4.35(+/-0.1). From diamagnetic shifts we determine the root mean square radii of the excitons. The radius of the first excited state is found to be 5-8 nm and that of the ground state around 2 nm. Our results further confirm the Wannier-Mott nature of the exciton quasiparticles in monolayer semiconductors and the assignment of the optical resonances in absorption-type measurements. They also provide additional support for the applicability of the effective mass hydrogenlike models in these systems.



rate research

Read More

105 - R. E. Putnam , Jr. , M. E. Raikh 2021
Hydrogenic excited states of a 2D exciton are degenerate. In the presence of a weak magnetic field, the $S$-states with a zero momentum of the center of mass get coupled to the $P$-states with finite momentum of the center of mass. This field-induced coupling leads to a strong modification of the dispersion branches of the exciton spectrum. Namely, the lower branch acquires a shape of a mexican hat with a minimum at a finite momentum. At certain magnetic field, exciton branches exhibit a linear crossing, similarly to the spectrum of a 2D electron in the presence of spin-orbit coupling. While spin is not involved, degenerate $S$ and $P$ states play the role of the spin projections. Lifting of degeneracy due to diamagnetic shifts and deviation of electron-hole attraction from purely Coulomb suppresses the linear crossing.
We report on the exciton and trion density dynamics in a single layer of MoSe$_2$, resonantly excited and probed using three-pulse four-wave mixing (FWM), at temperatures from 300K to 77K . A multi-exponential third-order response function for amplitude and phase of the heterodyne-detected FWM signal including four decay processes is used to model the data. We provide a consistent interpretation within the intrinsic band structure, not requiring the inclusion of extrinsic effects. We find an exciton radiative lifetime in the sub-picosecond range consistent to what has been recently reported. After the dominating radiative decay, the remaining exciton density, which has been scattered from the initially excited bright radiative state into dark states of different nature by exciton-phonon scattering or disorder scattering, shows a slower dynamics, covering 10ps to 10ns timescales. This includes direct bright transitions with larger in-plane momentum, as well as indirect dark transitions to indirect dark states. We find that exciton-exciton annihilation is not relevant in the observed dynamics, in variance from previous finding under non-resonant excitation. The trion density at 77K reveals a decay of the order of 1ps, similar to what is observed for the exciton. After few tens of picoseconds, the trion dynamics resembles the one of the exciton, indicating that trion ionization occurs on this timescale.
We investigate the excitonic dynamics in MoSe2 monolayer and bulk samples by femtosecond transient absorption microscopy. Excitons are resonantly injected by a 750-nm and 100-fs laser pulse, and are detected by a probe pulse tuned in the range of 790 - 820 nm. We observe a strong density-dependent initial decay of the exciton population in monolayers, which can be well described by the exciton-exciton annihilation. Such a feature is not observed in the bulk under comparable conditions. We also observe the saturated absorption induced by exciton phase-space filling in both monolayers and the bulk, which indicates their potential applications as saturable absorbers.
We demonstrate control over light-matter coupling at room temperature combining a field effect transistor (FET) with a tuneable optical microcavity. Our microcavity FET comprises a monolayer tungsten disulfide WS$_2$ semiconductor which was transferred onto a hexagonal boron nitride flake that acts as a dielectric spacer in the microcavity, and as an electric insulator in the FET. In our tuneable system, strong coupling between excitons in the monolayer WS$_2$ and cavity photons can be tuned by controlling the cavity length, which we achieved with excellent stability, allowing us to choose from the second to the fifth order of the cavity modes. Once we achieve the strong coupling regime, we then modify the oscillator strength of excitons in the semiconductor material by modifying the free electron carrier density in the conduction band of the WS$_2$. This enables strong Coulomb repulsion between free electrons, which reduces the oscillator strength of excitons until the Rabi splitting completely disappears. We controlled the charge carrier density from 0 up to 3.2 $times$ 10$^{12}$ cm$^{-2}$, and over this range the Rabi splitting varies from a maximum value that depends on the cavity mode chosen, down to zero, so the system spans the strong to weak coupling regimes.
In the framework of first-principles calculations, we investigate the structural and electronic properties of graphene in contact with as well as sandwiched between WS$_2$ and WSe$_2$ monolayers. We report the modification of the band characteristics due to the interaction at the interface and demonstrate that the presence of the dichalcogenides results in quantum spin Hall states in the absence of a magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا