Thermal Diffusivity Above Mott-Ioffe-Regel Limit


Abstract in English

We present high-resolution thermal diffusivity measurements on several near optimally doped electron- and hole-doped cuprate systems in a temperature range that passes through the Mott-Ioffe-Regel limit, above which the quasiparticle picture fails. Our primary observations are that the inverse thermal diffusivity is linear in temperature and can be fitted to $D_Q^{-1}=aT+b$. The slope $a$ is interpreted through the Planckian relaxation time $tauapproxhbar/k_BT$ and a thermal diffusion velocity $v_B$, which is close, but larger than the sound velocity. The intercept $b$ represent a crossover diffusion constant that separates coherent from incoherent quasiparticles. These observations suggest that both phonons and electrons participate in the thermal transport, while reaching the Planckian limit for relaxation time.

Download